The interplay of symplectic and projective geometry in the context of plane wave spacetimes

George A.J. Sparling

(photos of the blackboard notes from the talk given at JurekFest)

Warszawa, 19.9.2019

http://jurekfest.fuw.edu.pl

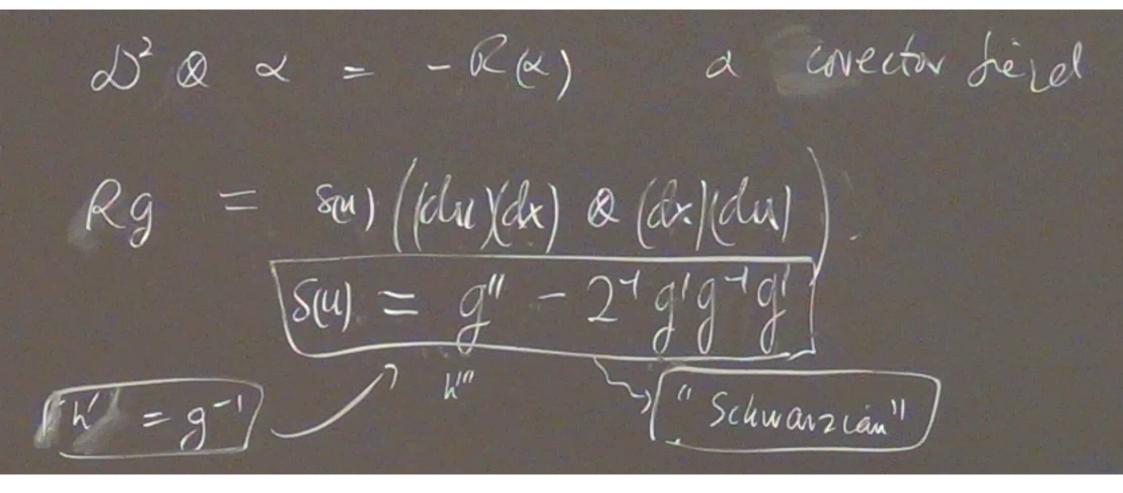
Dilation of spacetime preserves a null geodesic E/3 Alexseevshi -> plane warres. M+Z. UER Gz = 2 dudv - gu)(dx, dx) ver val dim n freen. GB = 2 dudr - p(u)(x,x) du² - g(dx,dx)

$$\begin{array}{c} () & D = \chi(\partial_{\chi}) + 2\sigma\partial\sigma. \\ \hline \\ \alpha & P = \lambda. \\ \hline \\ \alpha & Q = \lambda(\partial_{\chi}) + \chi\partial\sigma. \\ \hline \\ \beta & Q = h(\partial_{\chi}) + \chi\partial\sigma. \\ \hline \\ Heisenber \\ \alpha & \beta & \gamma. \\ \hline \\ h(u) = giu) \\ \hline \\ h(u) = giu) \\ \end{array}$$

D&du = 0 $D \otimes d\sigma = -2^{-1}g'(u)(dx \otimes dx)$ Dødx = -2' gig g'u) (du ædx+dxædn) D'& x = - R(x) à conector field $Rg = son (klu (dx) \otimes (dx)(du))$ $\overline{s(u)} = g'' - 2^{-1}g'g^{-1}g'$

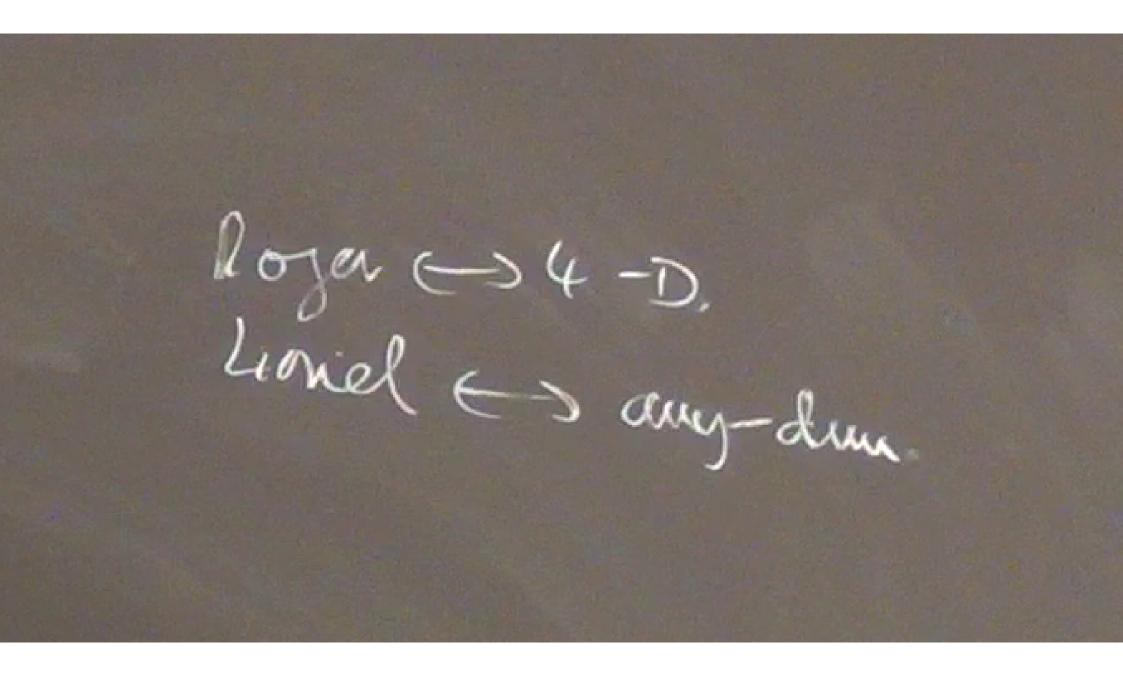
S(u) = 0g" = 27 g' g g' g back g''' = 0, $g = A_1 + 2B_1 + C_1^2$ $C = BA^{+}B$ $C = (Cu+B)g^{-1}(Cu+B)$ g = A [I + A-'Bu]

 $L' = (I + A' Bu)^2 A^{-1}$ h = D + u(A+Bu) +. FRACT. LINGAR



(2N-dimension AB] endomorphismi if a v.s. st $A8|_{A} = II_{A}$ $AB|_{B} = -II_{B}$ 1.1.1. (din A = chin B) $\frac{1}{4}$ (AC)+(BD)² agrees with standard X-rakes V.S. S.Z-D ~いられ、らその A (X, Y) (8.12) (X, Y) (8.12)

nod of a null geodesic. Pennse lenik (-> Shra sk (yfue) geodesii deriation. Lar K/K unibral space IKERª Rabed $\rightarrow \tilde{\mathcal{J}} = \mathcal{R}(\mathcal{I})$ Symplety C date Zu dum Sba Sechs equ enline L- subspace Sachs S(T)



replaced by <u>Hillsect transform</u> $H^2 = -I$. $(v, \partial)^{n+1} \quad f_n(x^{a}) = (v \wedge x)^{n+1} (x f)_{-n-2}$ Pa JXª+. Whitened Son(x*): 2 doffieded Hrep Rieman Suface wald theat Savane vost of barrie twoter Salare wit of barrie strugthery J. Gr (J2) -)Sart 5 1-D manifile -> puy shucks