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A simple derivation is presented of the equations for the variation of the parallel 
propagator and the holonomy operators of Yang-Mills (YM) connections 
caused by variations of both the connection and the path. The derivation does 
not make any direct use of functional derivatives and is based on the solution of 
the varied parallel transport equation. In particular, the different forms that 
these equations take for a two parameter family of curves in E3 are discussed. 
As an example of this formalism, it is shown how any congruence defines a 
solution of the Hamilton-Jacobi version of the Gauss law constraint of YM 
theories, or equivalently, of the Dirac quantum-Gauss law constraint. 

I. INTRODUCTION 
A commonly used concept in gauge theories (both classically and quantum mechanically) 

is that of the parallel propagator (PP); a linear mapping from the fibers over a point x to the 
fibers over the point x’ that depends on the connection along a path 55’ from x to x’. If the path 
closes, then the mapping is from the fiber at x to itself and is then referred to as the holonomy 
operator. Often one is interested in the behavior of the parallel propagator (or holonomy 
operator) under variations of either the path or of the connection itself, i.e., the variational 
derivative of the PP (or holonomy) with respect to the path or the connection. The interest in 
these variations arises in a variety of physical situations as, for example, in the work on loop 
space quantization of both gauge theories and general relativity;’ in the Hamilton-Jacobi 
treatment of constraints’ in Yang-Mills (YM) and general relativity (GR); and in a study3 of 
a non-Abelian generalization of quantum mechanics. This variational calculation, at least for 
special cases, is most often done (and occasionally with errors) in a rather straightforward but 
cumbersome fashion using the fact that the PP can be written as the path-ordered exponential 
integral of the connection. Though special cases are well known,4 we have not found our 
general case considered in the literature. It is the main purpose of this note to show and display 
the results of a unified and simple method for performing these calculations. In addition, we 
show how our results allow the solution of an important set of functional differential equations, 
namely the Yang-Mills Gauss law constraint. 

In the second section we give our notation; the calculation and results are outlined in the 
third section. The fourth section is devoted to solving the Gauss law constraint (as a 
Hamilton-Jacobi equation or as a Schriidinger equation) for all gauge theories based on 
semi-simple Lie groups. In the last section we present other applications of the path variations 
of the propagator. 

II. NOTATION 
We begin with an N-complex dimensional vector bundle VN over some n-dimensional 

manifold d with local coordinates x’. (4 could be an arbitrary manifold but for simplicity 
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Dark matter as white holes ?

Dark matter is the only truly completely unexplained observed phenomenon in fundamental 
physics.   
[Dark energy is far less mysterious. Bianchi C.R, Is dark energy really a mystery?, Nature, 2010. ]


Old idea: dark matter is formed by Planck size remnants of Black hole evaporation.    
- Aharonov Casher Nussinov The Unitarity puzzle and Planck mass stable particles, 1987.  
- MacGibbon, Can Planck-mass relics of evaporating black holes close the Universe? Nature, 1987.  
-  Barrow Copeland Liddle 1992. Carr Gilbert Lidsey 1994. Liddle Green, 1997. Alexeyev Barrau G. Boudoul Khovanskaya 
Sazhin, 2002, Chen Adler, 2003, Barrau Blais Boudoul Polarski, 2004,Chen, 2004, Nozari Mehdipour, 2008. 


➜ ➜ ➜ Remnants can be white holes 
Haggard CR, Black hole fireworks: quantum-gravity effects outside the horizon spark black to white hole tunneling, 2015.  
Bianchi Christodoulou D'Ambrosio Haggard CR, White Holes as Remnants: A Surprising Scenario for the End of a Black Hole. 
2018.


➜ ➜ ➜ Microgram (Planck scale) white holes are stabilised by quantum mechanics.   
- Vidotto, C.R., Small black/white hole stability and dark matter 2018.


Microgram (Planck scale) white holes can be produced at the end of the evaporation of primordial 
black holes. 



White holes

Small black/white hole stability and dark matter

Carlo Rovelli1 and Francesca Vidotto2

1
CPT, Aix-Marseille Université, Université de Toulon, CNRS, Marseille, France;

2
University of theBasqueCountry UPV/EHU, Departamento de F́ısicaTeórica, E-48940 Leioa, Spain.

(Dated: November 13, 2018)

We show that the expected lifetime of white holes formed as remnants of evaporated black holes
is consistent with their production at reheating. We give a simple quantum description of these
objects and argue that a quantum superposition of black and white holes with large interiors is
stable, because it is protected by the existence of a minimal eigenvalue of the area, predicted by
Loop Quantum Gravity. These two results support the hypothesis that a component of dark matter
could be formed by small black hole remnants.

I. REMNANTS

The possibility that remnants of evaporated black
holes form a component of dark matter was suggested by
MacGibbon [1] thirty years ago and has been explored
by many authors [2–9]. There are no strong observational
constraints on this possible contribution to dark matter
[10]; the weak point of this scenario has been, so far, the
obscurity of the physical nature of the remnants.

The situation has changed recently because of the re-
alisation that conventional physics provides a candidate
for remnants: small-mass white holes with a large in-
teriors [11–13]. In addition, quantum gravity indicates
that these are indeed produced at the end of the evap-
oration [14–18]. Here we show that the remnant life-
time predicted in [16] is remarkably consistent with the
production of primordial black holes at the end of infla-
tion. More precisely, the rather strict constraints that the
model sets on the time scales of the lifetime of black and
white holes happen to match with a cosmological win-
dow where primordial black hole production is expected.
A preliminary version of this result was posted in [19].

Open questions are the stability and the eventual quan-
tum properties of these remnants. It was suggested in
[16] that these remnants may be stable because quantum
gravity dumps the Planck scale perturbations required
to trigger their instability. Here we analyse the situa-
tion a bit more in detail by studying the stability of the
remnants using a simple quantum model that captures
the dynamical processes black and white holes can un-
dergo. The model indicates that a quantum superposi-
tion of Planck size white and black holes should be stable,
because of the large interior volume and the area gap, i.e.
the presence of a minimal non-vanishing eigenvalue in the
area spectrum according to Loop Quantum Gravity.

These two results support the hypothesis that a com-
ponent of dark matter could be formed by small black
hole remnants.

II. WHITE HOLES

The di↵erence between a black hole and a white hole
is not very pronounced. Observed from the outside (say

from the exterior of a sphere of radius r = 2m+ ✏ > 2m,
where m is the mass of the hole) and for a finite amount
of time, a white hole cannot be distinguished from a black
hole.

This is clear from the usual Schwarzschild line element,
which is symmetric under time reversal, and therefore de-
scribes equally well the exterior of a black hole and the
exterior of a white hole. Equivalently, zone II of the maxi-
mal extension of the Schwarzschild solution is equally the
outside of a black hole and the outside of a white hole
(see Fig. 1, Top). Analogous considerations hold for the
Kerr solution. In other words, the continuation inside
the radius r = 2m + ✏ of an external stationary black

II

BH

WH

II

BH

WH

II

BH

WH

FIG. 1. Top: in the extended Schwarzschild spacetime, which

is stationary, the (light grey) region outside r = 2m+ ✏ (dot-

ted line) is equally the outside of a black and a white hole.

Center: A collapsing star (dark grey) replaces the white hole

region (WH) in the non-stationary collapse metric. Bottom:
The time revered process. The di↵erence between the last two

can only be detected looking a the past, or the future.
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White holes are undistinguishable from black holes 
from the exterior, unless matter enters or exit the 
horizon. 



Much growing evidence for a 
black-to-white hole scenario, 
and much  recent work on this 
possibility in LQG
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hole metric contains both a trapped region (a black hole)
ad an anti-trapped region (a white hole).

What distinguishes then a black hole from a white
hole? The objects in the sky we call ‘black holes’ are de-
scribed by a stationary metric only approximately, and
for a limited time. In their past (at least) their met-
ric was definitely non-stationary, as they were produced
by gravitational collapse. In this case, the continuation
of the metric inside the radius r = 2m + ✏ contains a
trapped region, but not an anti-trapped region (see Fig.
1, Center). Viceversa, a white hole is an object that
is undistinguishable from a black hole from the exte-
rior and for a finite time, but in the future ceases to be
stationary and there is no trapped region in its fu-
ture (see Fig. 1, Bottom).

III. QUANTUM PROCESSES AND
TIME SCALES

The classical prediction that the black is forever sta-
ble is not reliable. In the uppermost band of the central
diagram of Fig. 1 quantum theory dominates. The death
of a black hole is therefore a quantum phenomenon. The
same is true for a white hole, reversing time direction.
That is, the birth of a white hole is in a region where
quantum gravitational phenomena are strong.

This consideration eliminates a tradi-
tional objection to the physical existence of
white holes: How would they originate? They orig-
inate from a region where quantum phenomena
dominate the behaviour of the gravitational field.

Such regions are generated in particular by the end
of the life of a black hole, as mentioned above. Hence
a white hole can in principle be originated by a dying
black hole. This scenario has been shown to be concretely
compatible with the exact external Einstein dynamics
in [12] and has been explored in [13–18]. The causal
diagram of the spacetime giving the full life cycle of the
black-white hole is given below in Fig. 2.

In particular, the result of [16] indicates that the black-
to-white process is asymmetric in time [13] and the time
scales of the durations of the di↵erent phases are deter-
mined by the initial mass of the black hole mo. The

WH II
BH

FIG. 2. The full life of a black-white hole.

lifetime ⌧BH of the black hole is known from Hawking
radiation theory to be at most of the order

⌧BH ⇠ m
3
o

(1)

in Planck units ~ = G = c = 1. This time can be as
shorter as ⌧BH ⇠ m

2
o
because of quantum gravitational

e↵ects [11–15] (see also [20–24]) but we disregard this
possibility here. The lifetime ⌧WH of the white hole phase
is longer [16]:

⌧WH ⇠ m
4
o

(2)

in Planck units. That is, in arbitrary units:

⌧WH =
mo

mPl

⌧BH , (3)

where mPl is the Planck mass. The tunnelling process
itself from black to white takes a time of the order of
the current mass at transition time [15]. The area of the
horizon of the black hole decreases with time because of
Hawking evaporation, decreasing from mo to the Planck
mass mPl. At this point the transition happens and a
white hole of mass of the order of the Planck mass is
formed.

IV. TIMESCALES

Consider the hypothesis that white-hole remnants are
a constituent of dark matter. To give an idea of the
density of these objects, a local dark matter density of
the order of 0.01M�/pc

3 corresponds to approximately
one Planck-scale remnant, with the weight of half a inch
of human hair, per each 10.000Km

3. For these objects to
be still present now we need that their lifetime be larger
or equal than the Hubble time TH , that is

m
4
o
� TH . (4)

On the other hand, since the possibility of many larger
back holes is constrained by observation, we expect rem-
nants to be produced by already evaporated black holes,
therefore the lifetime of the black hole must be shorter
than the Hubble time. Therefore

m
3
o
< TH . (5)

This gives an estimate on the possible value of m0:

1010gr  m
3
o
< 1015gr. (6)

These are the masses of primordial black holes that could
have given origin to dark matter present today in the
form of remnants. Their Schwarzschild radius is in the
range

10�18
cm  Ro < 10�13

cm . (7)

According to a commonly considered theory of primor-
dial black-hole formation, black holes of a given mass

The black to white hole transition
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mines the geometry of the region past it, and shows that
the entire problem of the end of a black hole reduces to
the quantum transition in the region B.

The important point is that there are two regions inside
horizons: one below and one above the central singular-
ity. That is, the black hole does not simply pop out of
existence: it tunnels into a region that is screened inside
an (anti-trapping) horizon. Since it is anti-trapped, this
region is actually the interior of a white hole. Thus, black
holes die by tunneling into white holes.

Unlike for the case of the left panel of Figure 4, now
running the time evolution backwards makes sense: the
central singularity is screened by an horizon (‘time re-
versed cosmic censorship’) and the overall backward evo-
lution behaves qualitatively (not necessarily quantitively,
as initial conditions may di↵er) like the time-forward one.

Since we have the explicit metric across the central
singularity, we know the features of the resulting white
hole. The main consequence is that its interior is what
results from the transition described in the above section:
namely a white hole born possibly with a small horizon
area, but in any case with a very large interior volume,
inherited from the black hole that generated it.

If the original black hole is an old hole that started
out with a large mass mo, then its interior is a very long
tube. Continuity of the size of the tube in the transi-
tion across the singularity, results in a white hole formed
by the bounce, which initially also consists of a very long
interior tube, as in Figure 5. Subsequent evolution short-
ens it (because the time evolution of a white hole is the
time reversal of that of a black hole), but this process
can take a long time. Remarkably, this process results in
a white hole that has a small Planckian mass and a long
life determined by how old the parent black hole was.
In other words, the outcome of the end of a black hole
evaporation is a long-lived remnant.

FIG. 5. Black hole bounce, with a sketch of the inside geome-
tries, before and after the quantum-gravitational transition.

The time scales of the process can be labelled as in
Figure 5. We call vo the advanced time of the collapse,
v� and v+ the advanced time of the onset and end of
the quantum transition, uo the retarded time of the fi-
nal disappearance of the white hole, and u� and u+ the
retarded times of the onset and end of the quantum tran-
sition. The black hole lifetime is

⌧bh = v� � vo. (14)

The white hole lifetime is

⌧wh = uo � u+. (15)

And we assume that the duration of the quantum tran-
sition of the B region satisfies u+ �u� = v+ � v� ⌘ �⌧ .
Disregarding Hawking evaporation, a metric describing

this process outside the B region can be written explic-
itly by cutting and pasting the extended Schwarzschild
solution, following [3]. This is illustrated in Figure 6:
two Kruskal spacetimes are glued across the singularity
as described in the previous section and the shaded re-
gion is the metric of the portion of spacetime outside a
collapsing shell (here chosen to be null).

FIG. 6. Left: Two Kruskal spacetimes are glued at the singu-
larity. The grey region is the metric of a black to white hole
transition outside a collapsing and the exploding null shell.
Right: The corresponding regions in the physical spacetime.

While the location of the A region is determined by the
classical theory, the location of the B region, instead, is
determined by quantum theory. The B process is indeed
a typical quantum tunneling process: it has a long life-
time. A priori, the value of ⌧bh is determined probabilis-
tically by quantum theory. As in conventional tunneling,
in a stationary situation (when the horizon area varies
slowly), we expect the probability p per unit time for the
tunneling to happen to be time independent. This im-
plies that the normalised probability P (t) that the tun-
neling happens between times t and t+dt is governed by
dP (t)/dt = �pP (t), namely is

P (t) =
1

⌧bh
e
� t

⌧bh , (16)

which is normalised (
R1
0 P (t)dt = 1) and where ⌧bh sat-

isfies

⌧bh = 1/p. (17)

We note parenthetically that the quantum spread in
the lifetime can be a source of apparent unitarity vio-
lation, for the following reason. In conventional nuclear

A black to white hole transition is allowed 
by a rapid quantum tunneling around the 
classical singularity  
Haggard CR, 2015,
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mines the geometry of the region past it, and shows that
the entire problem of the end of a black hole reduces to
the quantum transition in the region B.

The important point is that there are two regions inside
horizons: one below and one above the central singular-
ity. That is, the black hole does not simply pop out of
existence: it tunnels into a region that is screened inside
an (anti-trapping) horizon. Since it is anti-trapped, this
region is actually the interior of a white hole. Thus, black
holes die by tunneling into white holes.

Unlike for the case of the left panel of Figure 4, now
running the time evolution backwards makes sense: the
central singularity is screened by an horizon (‘time re-
versed cosmic censorship’) and the overall backward evo-
lution behaves qualitatively (not necessarily quantitively,
as initial conditions may di↵er) like the time-forward one.

Since we have the explicit metric across the central
singularity, we know the features of the resulting white
hole. The main consequence is that its interior is what
results from the transition described in the above section:
namely a white hole born possibly with a small horizon
area, but in any case with a very large interior volume,
inherited from the black hole that generated it.

If the original black hole is an old hole that started
out with a large mass mo, then its interior is a very long
tube. Continuity of the size of the tube in the transi-
tion across the singularity, results in a white hole formed
by the bounce, which initially also consists of a very long
interior tube, as in Figure 5. Subsequent evolution short-
ens it (because the time evolution of a white hole is the
time reversal of that of a black hole), but this process
can take a long time. Remarkably, this process results in
a white hole that has a small Planckian mass and a long
life determined by how old the parent black hole was.
In other words, the outcome of the end of a black hole
evaporation is a long-lived remnant.

FIG. 5. Black hole bounce, with a sketch of the inside geome-
tries, before and after the quantum-gravitational transition.

The time scales of the process can be labelled as in
Figure 5. We call vo the advanced time of the collapse,
v� and v+ the advanced time of the onset and end of
the quantum transition, uo the retarded time of the fi-
nal disappearance of the white hole, and u� and u+ the
retarded times of the onset and end of the quantum tran-
sition. The black hole lifetime is

⌧bh = v� � vo. (14)

The white hole lifetime is

⌧wh = uo � u+. (15)

And we assume that the duration of the quantum tran-
sition of the B region satisfies u+ �u� = v+ � v� ⌘ �⌧ .
Disregarding Hawking evaporation, a metric describing

this process outside the B region can be written explic-
itly by cutting and pasting the extended Schwarzschild
solution, following [3]. This is illustrated in Figure 6:
two Kruskal spacetimes are glued across the singularity
as described in the previous section and the shaded re-
gion is the metric of the portion of spacetime outside a
collapsing shell (here chosen to be null).

FIG. 6. Left: Two Kruskal spacetimes are glued at the singu-
larity. The grey region is the metric of a black to white hole
transition outside a collapsing and the exploding null shell.
Right: The corresponding regions in the physical spacetime.

While the location of the A region is determined by the
classical theory, the location of the B region, instead, is
determined by quantum theory. The B process is indeed
a typical quantum tunneling process: it has a long life-
time. A priori, the value of ⌧bh is determined probabilis-
tically by quantum theory. As in conventional tunneling,
in a stationary situation (when the horizon area varies
slowly), we expect the probability p per unit time for the
tunneling to happen to be time independent. This im-
plies that the normalised probability P (t) that the tun-
neling happens between times t and t+dt is governed by
dP (t)/dt = �pP (t), namely is

P (t) =
1

⌧bh
e
� t

⌧bh , (16)

which is normalised (
R1
0 P (t)dt = 1) and where ⌧bh sat-

isfies

⌧bh = 1/p. (17)

We note parenthetically that the quantum spread in
the lifetime can be a source of apparent unitarity vio-
lation, for the following reason. In conventional nuclear

ds2l =
4(⌧2 + l)2

2m� ⌧2
d⌧2 � 2m� ⌧2

⌧2 + l
dx2 � (⌧2 + l)2d⌦2.

<latexit sha1_base64="Q26gbk9JX5f1T0rohmqF7/DrpDE="></latexit>
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u(r, n }=e
(2.4)

In
terms

ofthese
fields

the
Lagrangian

is

S=f & —g
[ —

u R+2u
(Ba) —4(Bu) —

2u
e

+Que
(2.5)

The
equations

of motion
forthis

Lagrangian
are

given
in

Appendix
A.

Ofcourse,
to

find
interior

solutions
with

zero
magnetic

field
to
match

onto
the

exterior
extremal

dilaton
solution,

we
setQ =0

in
the

above
equation.

The
power

series
for

the
fields

o
and

(t, expanding
from

the
shell towards

the
interior,

is

2

u(r, n) =R
(~) 1—

R
(~)

[1+f, (r)n +f2(r)n
~

+f3(r)n
+

],
o(r, n

) =
[ln(R

(r)}+d, (r)n +d2(~)n
+d3(~)n

+
],

(2.6)

(2.7)

h(r, n)=1+h&(r)n+h2(r)n
+h3(r)n

+
g(r, n)=1+g,(r)n+g2(r)n

+g3(r)n
+

(2.8)

(2.9)

The
equations

that
we

have
to
describe

this
system

now
consistofthe

equations
for

u
and

o., and
the

stress
tensor

equation.
Atthe

boundary
ofthe

collapsing
shellthere

is
a nontrivial

matching
equation

forthe
stress

tensor
com-

ponent
Too.

W
e
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that
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classical

Lagrangian
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the
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isofthe

form

S =f &
gu'[ —(a~)— '—m'~'+

].
(2.10)

That
is, the

matter
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couples
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dilaton
like
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massive
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ofthe

string.
In
the

rest
frame

of
the

collapsing
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the
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equation
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Tor, dn
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which
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(2. 11)

where
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are
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is
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], and
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but

here
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not
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to
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believe

that
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There
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Thus
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seems
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To
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motion
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have
made

the
fairly

arbitrary
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that
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fi(r)—

(2.13)

This
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a
single

first-order
ordinary

differential
equation

for
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The
solution

so
obtained

behaves
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the
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begins
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on
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after
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shown
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an
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as
a
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that
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The
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must

be
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the
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that
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that
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to
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with
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believe

that
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that

a
fi(r)—

(2.13)

This
gives

us
a
single

first-order
ordinary

differential
equation

forR(r).
The

solution
so

obtained
behaves

likeR(r)=Q+e
r',

as ~~oo.
We

can
then

use
this

solution
to
check

that
the

other
coefficient

functions,
to

leading
order,

are
wellbehaved

forallfinite
values

of~.
Wecan

continue
this

procedure
perturbatively,

to
verify

that
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that
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FIG. 2. The interior geometry of an old black hole: a very
long thin tube, whose length increases and whose radius de-
creases with time. Notice it is finite, unlikely the Einstein-
Rosen bridge.

the two regions A and B where classical general relativity
becomes unreliable.

Region A is characterised by large curvature and covers
the singularity. According to classical general relativity
the singularity never reaches the horizon. (N.B.: Two
lines meeting at the boundary of a conformal diagram
does not mean that they meet in the physical spacetime.)

Region B, instead, surrounds the end of the evapora-
tion, which involves the horizon, and a↵ects what hap-
pens outside the hole. Taking evaporation into account,
the area of the horizon shrinks progressively until reach-
ing region B.

The quantum gravitational e↵ects in regions A and B

are distinct, and confusing them is a source of misun-
derstanding. Notice that a generic spacetime region in
A is spacelike separated and in general very distant from
region B. By locality, there is no reason to expect these
two regions to influence one another.

The quantum gravitational physical process happening
at these two regions must be considered separately.

III. THE A REGION: TRANSITIONING
ACROSS THE SINGULARITY

To study the A region, let us focus on an arbitrary
finite portion of the collapsing interior tube. As we ap-
proach the singularity, the Schwarzschild radius rs, which
is a temporal coordinate inside the hole, decreases and
the curvature increases. When the curvature approaches
Planckian values, the classical approximation becomes
unreliable. Quantum gravity e↵ects are expected to
bound the curvature [8–11, 13–19, 22–24, 27, 29, 64, 65].
Let us see what a bound on the curvature can yield. Fol-
lowing [66], consider the line element

ds
2 = �4(⌧2 + l)2

2m� ⌧2
d⌧

2+
2m� ⌧

2

⌧2 + l
dx

2+(⌧2+l)2d⌦2
, (4)

where l⌧m. This line element defines a genuine Rieman-
nian spacetime, with no divergences and no singularities.
Curvature is bounded. For instance, the Kretschmann

FIG. 3. The transition across the A region.

invariant K ⌘ Rµ⌫⇢�R
µ⌫⇢� is easily computed to be

K(⌧) ⇡ 9 l2 � 24 l⌧2 + 48 ⌧4

(l + ⌧2)8
m

2 (5)

in the large mass limit, which has the finite maximum

K(0) ⇡ 9m2

l6
. (6)

For all the values of ⌧ where l ⌧ ⌧
2
< 2m the line

element is well approximated by taking l = 0 which gives

ds
2 = � 4⌧4

2m� ⌧2
d⌧

2 +
2m� ⌧

2

⌧2
dx

2 + ⌧
4
d⌦2

. (7)

For ⌧ < 0, this is the Schwarzschild metric inside the
black hole, as can be readily seen going to Schwarzschild
coordinates

ts = x, and rs = ⌧
2
. (8)

For ⌧ > 0, this is the Schwarzschild metric inside a white
hole. Thus the metric (4) represents a continuous transi-
tion of the geometry of a black hole into the geometry of
a white hole, across a region of Planckian, but bounded
curvature.
Geometrically, ⌧ = constant (space-like) surfaces foli-

ate the interior of a black hole. Each of these surfaces
has the topology S2 ⇥ R, namely is a long cylinder. As
time passes, the radial size of the cylinder shrinks while
the axis of the cylinder gets stretched. Around ⌧ = 0
the cylinder reaches a minimal size, and then smoothly
bounces back and starts increasing its radial size and
shrinking its length. The cylinder never reaches zero size
but bounces at a small finite radius l. The Ricci tensor
vanishes up to terms O(l/m).
The resulting geometry is depicted in Figure 3. The

region around ⌧ = 0 is the smoothing of the central black
hole singularity at rs = 0.
This geometry can be given a simple physical interpre-

tation. General relativity is not reliable at high curva-
ture, because of quantum gravity. Therefore the “pre-
diction” of the singularity by the classical theory has no
ground. High curvature induces quantum particle cre-
ation, including gravitons, and these can have an e↵ec-
tive energy momentum tensor that back-reacts on the

Internal geometry 2 (with Hawking radiation)

The interior metric including the back reaction of the 
Hawking radiation has been modelled. 
[Martin-Dussaud, C.R. '18, Evaporating black-to-white hole, arXiv:
1905.07251]
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‘guessed’ g1µ⌫) is given by

(I)


ds2 = �dudv + r2d⌦2

r = 1
2 (v � u)

(17)

(II)

"
ds2 = �

�
1� 2m

r

�
dudv + r2d⌦2

r = 2m
⇣
1 +W

⇣
e

v�u
4m �1

⌘⌘ (18)

(III)
h
ds2 = �

⇣
1� 2N(v)

r

⌘
dv2 + 2dvdr + r2d⌦2

(19)

(IV )
h
ds2 = �

⇣
1� 2M(u)

r

⌘
du2 � 2dudr + r2d⌦2

(20)

(V )


ds2 = �dudv + r2d⌦2

r = 1
2 (v � u)

(21)

The metric depends on the mass m of the black hole
at the beginning of the evaporation. It also makes use
of two functions M(u) and N(v), which represent how
the mass decreases with the evaporation. Their value
matches along the boundary III/IV , which marks the
apparent horizon.
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Figure 3: Penrose diagram of Hiscock model. Everywhere
the metric is locally that of Schwarzschild, characterised by a
parameter of mass. Its value is represented by a color, from
white (mass 0, i.e. Minkoswki) to red (initial massm), passing
through a gradient (M(u) or N(v)). The mass profile along
J+ is shown on Figure 4.

For completeness of the construction, we shall give the

formulae that relates the coordinates (U, V ) of the Pen-
rose diagram to the coordinates in which the metric of
each patch is written. This is not fully done in the orig-
inal paper of Hiscock [27], but it is a necessary work to
show that the Penrose diagram of Figure 3 correctly rep-
resents a consistent space-time model. The scrupulous
reader will find the equations in appendix A.

How shall we choose the mass function M(u) of the
model? From Hawking’s temperature formula (1), the
rate of mass loss was estimated by Page (see [28]) as

dM

dt
/ � 1

M2
. (22)

This suggests the behavior M(u) ⇠ (u0 � u)1/3, where
u0 is the retarded time at which the black hole faints,
holding as long as the semi-classical approximation is
valid. Nevertheless Hiscock shows that this behavior can-
not hold until the end of the evaporation, and that a finite
total amount of energy flux on J + implies that

lim
M!0

dM

du
= 0. (23)

Therefore, Hiscock proposes a mass profile shown on Fig-
ure 4.

m

u

M(u)

II IV V

Figure 4: Bondi-Sachs mass function along J+ for Hiscock
model.

From the perspective of an outside observer, Hiscock
model seems to describe correctly the phenomenology ex-
pected at the first stages of the evaporation. The de-
creasing Bondi-Sachs mass M(u) along J + corresponds
to an outgoing positive energy flux, due to Hawking ra-
diation. According to this model, the black hole evapo-
rates completely and space-time turns to Minkowski back
again. From our perpspective this end scenario is more
disputable for the persistence of the singularity than for
a potential loss of unitarity. In the following section, we
consider a possible white future to the singularity, which
as a spin-o↵, gives a way to restore unitarity.
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2m1  2Nj , so that

µ0,j > µ0,j�1 , rj > 2µ0,j . (31)

which can be restated saying that for each j, one, and
only one of the two following must hold:

µ0,j�1 < µ0,j <
rj
2

µ0,j�1 > µ0,j >
rj
2 .

(32)

Initially, we have r0 = 0. Since r1 > 0 we deduce

0 < µ01 <
r1
2
. (33)

Then, using that rj+1 > rj , we show by induction that
for any j

µ0,j�1 < µ0,j <
rj
2
. (34)

Thus µ0j is increasing with j and satisfies

0 < µ0j < m1. (35)

A similar induction shows that µ1j is also an increasing
function of j, satisfying.

0 < µ1j < m1. (36)

Then, under the assumption of decreasing r along in-
going null geodesics, an induction over i shows that for
any j, µij is a decreasing function of i. ⇤

The previous discrete model gives a fair description
of what can happen when a series of Hawking quanta
successively cross the bouncing shell. In the continuum
limit, when n ! 1, the resulting metric takes the form

ds2 = �
✓
1� 2µ(u, v)

r

◆
dudv + r2d⌦2 (37)

characterised by two functions, namely the radius r(u, v)
and the mass µ(u, v). We cannot give explicitely the
change of coordinates from (u, v) to (U, V ) but we assume
that v(V ) and u(U) are increasing. Then, theorem 1
shows that

@µ

@u
< 0 and

@µ

@v
> 0. (38)

As a corollary we have

0 < µ(u, v) < m1. (39)

We have no explicit expression neither for the radius
r(u, v) nor for the mass µ(u, v), for it would require in-
tegrate too di�cult equations. However, it is clear for
the construction of the discrete setting above that such
functions exist.

To sum-up, the resulting space-time is depicted on Fig-
ure 9, with the metric given by

(V )

"
ds2 = �

�
1� 2m1

r

�
dudv + r2d⌦2

r = 2m1

⇣
1 +W

⇣
e

v�u
4m1

�1
⌘⌘ (40)

(V Ia)

"
ds2 =

�
1� 2m1

r

�
dudv + r2d⌦2

r = 2m1

⇣
1 +W

⇣
�e�

v+u
4m1

�1
⌘⌘ (41)

(V Ib)
h
ds2 = �

⇣
1� 2N(v)

r

⌘
dv2 + 2dvdr + r2d⌦2

(42)

(V II)
h
ds2 = �

⇣
1� 2µ(u,v)

r

⌘
dudv + r2d⌦2 (43)

(V III)
h
ds2 = �

⇣
1� 2P (u)

r

⌘
du2 � 2dudr + r2d⌦2

(44)

(IX)


ds2 = �dudv + r2d⌦2

r = 1
2 (v � u)

(45)

In regions I� IV the metric is the same as the model of

I
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III

IV
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a
V Ib
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IX
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Figure 9: Penrose diagram of an evaporating black-to-white
hole with ingoing energy flux that crosses first the singularity
and then the bouncing shell. The dashed boundary V/V Ia
represents the apparent horizon of the white hole, charac-
terised by r = 2m1.

Hiscock (see equations (17-20) and (A1-A6)). The mass
function P (u) that appears in the metric of region V III,
is chosen to match the mass function µ(u, v) along the
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tools to compute the quantum amplitude of the transi-
tion. Loop Quantum Gravity o↵ers such tools, relying
over the definition of a boundary surrounding the region
where quantum e↵ects are expected to be dominant. In
our models, this region is a central diamond, and we have
shown how its size could be reduced to Planckian scale.
We let to future works the task of e↵ectively computing
the transition amplitude. Such a computation would ul-
timately confirm or not previous estimations of the prob-
abilty of transition and the lifetime of black holes.
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Appendix A: Details of Hiscock model

The Penrose diagram of Figure 2 is a faithfull rep-
resentation of the space-time described by the metric
of equations (3-5). The explicit expression of the map
that relates the coordinates of the diagram and that of
the metric requires to subdivide the Penrose diagram, as
shown on Figure 15. Then it is given by the equations:

(Ia)

"
u = �4m

⇥
1 +W

�
� tanU

e

�⇤

v = �4m
h
1 +W

⇣
� tan(V+2V0�⇡)

e

⌘i (A1)

(Ib)

2

664

u = �4m
⇥
1 +W

�
� tanU

e

�⇤

v = f1(V ) increasing, such that⇢
f1(�2V0 + 3⇡/4) = �4m(1 +W (1/e))
f1(⇡/4) = 0

(A2)

(Ic)


u = c1 + f1(U � 2V0 + ⇡)
v = c1 + f1(V )

(A3)

(II)


u = �4m log (� tanU)
v = 4m log tanV

(A4)

(III)

2

6666664

v = f2(V ) increasing, such that
f2(⇡/4) = N�1(M(0))

r = g(U, V ) such that8
><

>:

@g
@V = f 0

2(V )
2

⇣
1� 2N(f2(V ))

g(U,V )

⌘

g(U,⇡/4) = � 1
2f1(U � 2V0 + ⇡)

g(2V0 � ⇡/2� V, V ) = 0

(A5)
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Figure 15:

(IV )

2
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u = M�1(N(f2(U + ⇡/2)))
r = h(U, V ) such that8
>>><

>>>:

@h
@U = �u0(U)

2

⇣
1� 2M(u(U))

h(U,V )

⌘

h(�⇡/4, V ) = 2m
�
1 +W

�
tanV

e

��

h(U,⇡/2) = 1
h(U,U + ⇡/2) = g(U,U + ⇡/2)

(A6)

(V )


v = M�1(N(f2(V0))) + 2h(V0 � ⇡/2, V )
u = M�1(N(f2(V0))) + 2h(V0 � ⇡/2, U + ⇡/2)

(A7)

With these expressions we can check the consistency
of the space-time model, and notably the gluing condi-
tions, which match the metric along the boundaries of the
patches. Moreover, the advanced time v and the retarded
time u have been chosen to be both continuous along, re-
spectively, J� and J + (this requirement is helpful to
obtain the ray-tracing map).
The metric depends on the parameters m (the mass)

and V0 (linked to the life-time of the black hole)
and an arbitrary constant c1. Besides, the function
f1, f2, g, h,M,N are not given explicitely:

• f1 and f2 are arbitrary monotonous functions sat-
isfying the boundary conditions given in eq. (A2)
and eq. (A5).

• g and h are fixed implicitely by first order di↵er-
ential equations (A5) and (A6). These equations
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With these expressions we can check the consistency
of the space-time model, and notably the gluing condi-
tions, which match the metric along the boundaries of the
patches. Moreover, the advanced time v and the retarded
time u have been chosen to be both continuous along, re-
spectively, J� and J + (this requirement is helpful to
obtain the ray-tracing map).
The metric depends on the parameters m (the mass)

and V0 (linked to the life-time of the black hole)
and an arbitrary constant c1. Besides, the function
f1, f2, g, h,M,N are not given explicitely:

• f1 and f2 are arbitrary monotonous functions sat-
isfying the boundary conditions given in eq. (A2)
and eq. (A5).

• g and h are fixed implicitely by first order di↵er-
ential equations (A5) and (A6). These equations

Martin-Dussaud, C.R. '18, Evaporating black-to-white hole, arXiv:1905.07251



Remnant

5

mines the geometry of the region past it, and shows that
the entire problem of the end of a black hole reduces to
the quantum transition in the region B.

The important point is that there are two regions inside
horizons: one below and one above the central singular-
ity. That is, the black hole does not simply pop out of
existence: it tunnels into a region that is screened inside
an (anti-trapping) horizon. Since it is anti-trapped, this
region is actually the interior of a white hole. Thus, black
holes die by tunneling into white holes.

Unlike for the case of the left panel of Figure 4, now
running the time evolution backwards makes sense: the
central singularity is screened by an horizon (‘time re-
versed cosmic censorship’) and the overall backward evo-
lution behaves qualitatively (not necessarily quantitively,
as initial conditions may di↵er) like the time-forward one.

Since we have the explicit metric across the central
singularity, we know the features of the resulting white
hole. The main consequence is that its interior is what
results from the transition described in the above section:
namely a white hole born possibly with a small horizon
area, but in any case with a very large interior volume,
inherited from the black hole that generated it.

If the original black hole is an old hole that started
out with a large mass mo, then its interior is a very long
tube. Continuity of the size of the tube in the transi-
tion across the singularity, results in a white hole formed
by the bounce, which initially also consists of a very long
interior tube, as in Figure 5. Subsequent evolution short-
ens it (because the time evolution of a white hole is the
time reversal of that of a black hole), but this process
can take a long time. Remarkably, this process results in
a white hole that has a small Planckian mass and a long
life determined by how old the parent black hole was.
In other words, the outcome of the end of a black hole
evaporation is a long-lived remnant.

FIG. 5. Black hole bounce, with a sketch of the inside geome-
tries, before and after the quantum-gravitational transition.

The time scales of the process can be labelled as in
Figure 5. We call vo the advanced time of the collapse,
v� and v+ the advanced time of the onset and end of
the quantum transition, uo the retarded time of the fi-
nal disappearance of the white hole, and u� and u+ the
retarded times of the onset and end of the quantum tran-
sition. The black hole lifetime is

⌧bh = v� � vo. (14)

The white hole lifetime is

⌧wh = uo � u+. (15)

And we assume that the duration of the quantum tran-
sition of the B region satisfies u+ �u� = v+ � v� ⌘ �⌧ .
Disregarding Hawking evaporation, a metric describing

this process outside the B region can be written explic-
itly by cutting and pasting the extended Schwarzschild
solution, following [3]. This is illustrated in Figure 6:
two Kruskal spacetimes are glued across the singularity
as described in the previous section and the shaded re-
gion is the metric of the portion of spacetime outside a
collapsing shell (here chosen to be null).

FIG. 6. Left: Two Kruskal spacetimes are glued at the singu-
larity. The grey region is the metric of a black to white hole
transition outside a collapsing and the exploding null shell.
Right: The corresponding regions in the physical spacetime.

While the location of the A region is determined by the
classical theory, the location of the B region, instead, is
determined by quantum theory. The B process is indeed
a typical quantum tunneling process: it has a long life-
time. A priori, the value of ⌧bh is determined probabilis-
tically by quantum theory. As in conventional tunneling,
in a stationary situation (when the horizon area varies
slowly), we expect the probability p per unit time for the
tunneling to happen to be time independent. This im-
plies that the normalised probability P (t) that the tun-
neling happens between times t and t+dt is governed by
dP (t)/dt = �pP (t), namely is

P (t) =
1

⌧bh
e
� t

⌧bh , (16)

which is normalised (
R1
0 P (t)dt = 1) and where ⌧bh sat-

isfies

⌧bh = 1/p. (17)

We note parenthetically that the quantum spread in
the lifetime can be a source of apparent unitarity vio-
lation, for the following reason. In conventional nuclear
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While the location of the A region is determined by the
classical theory, the location of the B region, instead, is
determined by quantum theory. The B process is indeed
a typical quantum tunneling process: it has a long life-
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area, but in any case with a very large interior volume,
inherited from the black hole that generated it.

If the original black hole is an old hole that started
out with a large mass mo, then its interior is a very long
tube. Continuity of the size of the tube in the transi-
tion across the singularity, results in a white hole formed
by the bounce, which initially also consists of a very long
interior tube, as in Figure 5. Subsequent evolution short-
ens it (because the time evolution of a white hole is the
time reversal of that of a black hole), but this process
can take a long time. Remarkably, this process results in
a white hole that has a small Planckian mass and a long
life determined by how old the parent black hole was.
In other words, the outcome of the end of a black hole
evaporation is a long-lived remnant.

FIG. 5. Black hole bounce, with a sketch of the inside geome-
tries, before and after the quantum-gravitational transition.

The time scales of the process can be labelled as in
Figure 5. We call vo the advanced time of the collapse,
v� and v+ the advanced time of the onset and end of
the quantum transition, uo the retarded time of the fi-
nal disappearance of the white hole, and u� and u+ the
retarded times of the onset and end of the quantum tran-
sition. The black hole lifetime is

⌧bh = v� � vo. (14)

The white hole lifetime is

⌧wh = uo � u+. (15)

And we assume that the duration of the quantum tran-
sition of the B region satisfies u+ �u� = v+ � v� ⌘ �⌧ .
Disregarding Hawking evaporation, a metric describing

this process outside the B region can be written explic-
itly by cutting and pasting the extended Schwarzschild
solution, following [3]. This is illustrated in Figure 6:
two Kruskal spacetimes are glued across the singularity
as described in the previous section and the shaded re-
gion is the metric of the portion of spacetime outside a
collapsing shell (here chosen to be null).

FIG. 6. Left: Two Kruskal spacetimes are glued at the singu-
larity. The grey region is the metric of a black to white hole
transition outside a collapsing and the exploding null shell.
Right: The corresponding regions in the physical spacetime.

While the location of the A region is determined by the
classical theory, the location of the B region, instead, is
determined by quantum theory. The B process is indeed
a typical quantum tunneling process: it has a long life-
time. A priori, the value of ⌧bh is determined probabilis-
tically by quantum theory. As in conventional tunneling,
in a stationary situation (when the horizon area varies
slowly), we expect the probability p per unit time for the
tunneling to happen to be time independent. This im-
plies that the normalised probability P (t) that the tun-
neling happens between times t and t+dt is governed by
dP (t)/dt = �pP (t), namely is

P (t) =
1

⌧bh
e
� t

⌧bh , (16)

which is normalised (
R1
0 P (t)dt = 1) and where ⌧bh sat-

isfies

⌧bh = 1/p. (17)

We note parenthetically that the quantum spread in
the lifetime can be a source of apparent unitarity vio-
lation, for the following reason. In conventional nuclear

Long wavelength modes trapped inside 

Planck scale particle with a large number of internal states, that can decay into low 
energy quanta only in a very long time. 
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could have formed when their Schwarzschild radius was
of the order of the cosmological horizon. Remarkably, the
horizon was presumably in the above range at the end
of inflation, during or just after reheating. Which hap-
pens to be precisely the epoch where we expect primor-
dial black hole formation, namely shortly after reheat-
ing. This concordance supports the plausibility of the
proposed scenario; that is, if the lifetimes in the model
we are considering are correct, the black holes formed in
that period are around us as remnants: they have have
already ended the Hawking evaporation but the resulting
white holes have not had the time to dissipate yet.

V. STABILITY

Large classical white holes are unstable (see for in-
stance Chapter 15 in [25] and references therein). The
reason can be understood as follows. The spacetime de-
picted in the Center panel of Fig. 1 does not change much
under a small arbitrary modification of its initial condi-
tions on past null infinity; but it is drastically modified if
we modify its final conditions on future null infinity. This
is intuitively simple to grasp: if we sit on future null in-
finity and look back towards the hole, we see a black disk.
This is the final condition. A slightly perturbed final con-
dition includes the possibility of seeing radiation arriving
from this disk. This is impossible in the spacetime of the
Center panel of Fig. 1, because of the huge red shift of the
radiation moving next to the horizon, but it is possible
in the Top panel spacetime, because the radiation may
have crossed over from the other asymptotic region.

The same is true for a white hole, reversing the time
direction. In the spacetime depicted in the Bottom panel,
with some radiation, there is necessarily a dark spot in
the incoming radiation from past null infinity. If we per-
turb this configuration, and add some incoming radia-
tion in this dark spot, the evolution generically gives the
spacetime of the Top panel. Physically, what happens
is that this radiation moves along the horizon, is blue
shifted, can meet radiation coming out of the white hole
and this is more mass that m at a radius 2m: it is mass
inside its Schwarzschild radius. At this point the region
is trapped, and a black hole forms. Consequently the
evolution of the perturbed initial conditions yields the
spacetime on the Top, not the one on the Bottom: the
white hole is unstable and decays into a black hole.

This is the standard ‘instability of white holes’. How
does this instability a↵ect the remnants formed at the
end of a black hole evaporation? The wavelength of
the perturbation needed to trigger the instability must be
smaller that the the size of the hole [25]. It was observed
in [16] that to trigger the instability of a Planck size white
hole we need trans-Planckian radiation, and this is likely
not be allowed by quantum gravity. Below we explore
the issue in more detail building a quantum model to
describe the processes involving black and white holes.

VI. BLACK AND WHITE HOLE PROCESSES

Consider a (spherically symmetric) Cauchy surface ⌃
in an extended Schwarzschild spacetime with mass m. ⌃
can cut the horizon below or above the central sphere
(the bifurcating horizon). See the Top panel of Fig. 3.
If above, we say that ⌃ contains a black hole; if below,
we say it contains a white hole. In either case, the Top
asymptotic region and a portion of the interior of the
hole can be replaced by a finite matter-filled interior. In
this case the interior portion of ⌃ has a finite volume v.
See Fig. 3. One possibility is to fix this interior portion
of ⌃ to have constant trace of the exterior curvature, or,
equivalently, maximal volume [26–29]. Then the surface
is determined by its intersection with the horizon (other
interesting gauge fixing are possible).

Let |H,m, vi where H = B,W (for ‘Black’ and
‘White’) denote a coherent (semiclassical) quantum
state of matter and geometry on the portion of ⌃ that
lies inside the horizon, corresponding respectively to the
Center and Bottom panels of Fig. 3, namely entering
respectively the trapped (H = B) or anti-trapped
(H = W ) regions. Here m and v are the (expectation
values of) mass and interior volume of the Schwarzschild
geometry. We take here an approximation where these
are the only relevant degrees freedom. We assume black
hole states |B,m, vi and white hole states |W,m, vi to be
orthogonal states in the common Hilbert space H̃ of the

BH

WH

FIG. 3. Top: Cauchy surfaces in extended Schwarzschild

spacetime below and above the central sphere. Center: Inter-
nal portion of a Cauchy surface describing a black hole formed

by a collapsed star. Bottom: Its time reversal, or white hole.

States: |H,m, vi H=B,W
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<latexit sha1_base64="EcHIeF8DVsRxnnlBBphhk2vrbd8=">AAAB9HicbVDLSsNAFJ3UV62vqks3g0VwFRIVdOGi6KbLCn1BG8NkOmmHziPOTAol9DvcuFDErR/jzr9x2mahrQcuHM65l3vviRJGtfG8b6ewtr6xuVXcLu3s7u0flA+PWlqmCpMmlkyqToQ0YVSQpqGGkU6iCOIRI+1odD/z22OiNJWiYSYJCTgaCBpTjIyVAh7Kx0t4CxthzYVhueK53hxwlfg5qYAc9bD81etLnHIiDGZI667vJSbIkDIUMzIt9VJNEoRHaEC6lgrEiQ6y+dFTeGaVPoylsiUMnKu/JzLEtZ7wyHZyZIZ62ZuJ/3nd1MQ3QUZFkhoi8GJRnDJoJJwlAPtUEWzYxBKEFbW3QjxECmFjcyrZEPzll1dJ68L1L13v4apSvcvjKIITcArOgQ+uQRXUQB00AQZP4Bm8gjdn7Lw4787HorXg5DPH4A+czx9s5JCP</latexit>

m4
o
� TH .

<latexit sha1_base64="ipGNaAMchM6N2sWUFOQQQUl5vU4=">AAAB9XicbVDLSsNAFJ3UV62vqks3g0VwFRIt6LLopssKfUGbhsl00g6dR5iZKCX0P9y4UMSt/+LOv3HaZqGtBy4czrmXe++JEka18bxvp7CxubW9U9wt7e0fHB6Vj0/aWqYKkxaWTKpuhDRhVJCWoYaRbqII4hEjnWhyP/c7j0RpKkXTTBMScDQSNKYYGSsNeCgH1f6IwGZYd2FYrniutwBcJ35OKiBHIyx/9YcSp5wIgxnSuud7iQkypAzFjMxK/VSTBOEJGpGepQJxooNscfUMXlhlCGOpbAkDF+rviQxxrac8sp0cmbFe9ebif14vNfFtkFGRpIYIvFwUpwwaCecRwCFVBBs2tQRhRe2tEI+RQtjYoEo2BH/15XXSvnL9a9d7qFZqd3kcRXAGzsEl8MENqIE6aIAWwECBZ/AK3pwn58V5dz6WrQUnnzkFf+B8/gDQP5Fm</latexit>

Other possibility: 
Remnants from  

before the bounce
 Vidotto, Quantum insights on Primordial 

 Black Holes as Dark Matter 2018



What happens at the end  
of the evaporation? 

They tunnel int white  holes 
 
 

What happens at  r~0? 

Spacetime continues  
into a white hole 

B to W explosion and 
remnants can play a role in 
astrophysics and cosmology 
as Dark Matter. 
(Also 

- Sources of cosmic rays 
- Sources of FRB) 


