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Plan	
•  Quantum	theory	of	spherically	symmetric	
vacuum	space-times.		
Applications:	

•  Hawking	radiation.	
•  Casimir	effect.	
•  Self	gravitating	shells.	
•  Bonus:	axial	symmetry.	
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We have recently found, in closed form, the space of physical states corresponding 
to spherically symmetric vacuum space-times in loop quantum gravity. 
 
We studied the quantization of  test fields in such quantum space-times. 
“Quantum field theory on a quantum space-time”. 
 
Main message: the quantum background space-time acts as a lattice discretization 
of the field theory, naturally regulating it and eliminating infinities, but otherwise 
changing in only small ways the traditional picture of QFT on CST. 

Summary: 
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Spherically symmetric LQG           Kastrup, Thiemann, mid 90’s. 

We use the variables adapted to spherical symmetry developed 
by Bojowald and Swiderski (CQG23, 2129 (2006)). One ends 
up with two canonical pairs, Ex, Eφ, Kx, K φ.  

Kinematical states are 
 given by one  
dimensional  
spin networks, 

4 

After a rescaling and combination of the constraints that turns their algebra 
into a Lie algebra, we were able to solve in closed form for the space of  
physical states of spherically symmetric vacuum LQG (RG, JP PRL 110, 211301) 



A basis of he physical states are given by                                       a diffeo  
equivalent class of one dimensional graphs, the k’s are proportional to the  
eigenvalues of the areas of symmetry and M is the ADM mass. 
 
More details in: RG, J. Olmedo, JP, CQG 31 095009 (2014) arXiv:1310.5996 
 
We were able to find in closed form the solution to the Hamiltonian constraint. 
This constitutes the physical space of states for pure gravity. Among other features, 
one can choose states that approximate Schwarzschild very well in the regions of 
low curvature, but the singularity is eliminated. 
 
 
We will  study quantum fields living on this quantum state.  
For the combined system we assume the states have the form of a direct product  
between the gravity and the matter states. 
 
We will represent the matter part of the Hamiltonian constraint as a  
Dirac observable of the gravitational degrees of freedom. This will allow to promote 
it to an operator that is well defined on the physical space of states. 
 

gMkg ~   with  ,,~| >
!
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The main effect of considering the quantum vacuum is that the equations 
for the scalar field become similar to those of a scalar field discretized on 
a lattice and with a “dressed” metric. The lattice in this case is provided  
by the (one dimensional) spin network state of the background space-time. 
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For states with equally spaced nodes and z(x)=x/xmax , 

Putting a field to live on the quantum space-time. 



The spacing in the lattice is bounded by the condition of the quantization 
of the area of the surfaces of spherical symmetry. That condition implies 
that the points are separated a distance at least L2

Planck/(4GM) in the  
exterior of the black hole.  
 
As a consequence, the discrete equations can be excellent approximations 
of the continuum equations at energies lower than the Planck energy, 
and most calculations are essentially those in the continuum.  
 
One can proceed to define modes and in terms of them creation and  
annihilation operators and compute the vacua. The calculations of the 
Unruh, Boulware and Hartle-Hawking vacua resemble those of the  
continuum with very small corrections. 
 
The main change is that certain trans Planckian modes that would have  
wavelengths smaller than the lattice spacing are suppressed. This implies that 
physical quantities that may diverge at horizons, like the stress energy 
tensor, remain finite. This may have implications for future attempts to  
do back reaction calculations. 
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The  canonical equations for the scalar field correspond to a spatially discretized  
version of the Klein-Gordon equation in curved space time. 
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The construction of quantum vacua is carried out considering modes that solve the wave 
equation and creation and anhilation operators for these modes. We will only sketch the 
properties fo the Boulware modes 
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Asymptotically                               and one recovers an excellent aproximation to the  
Boulware vacuum. 
 
Asymptotically, near scri- and scri+ the modes are:  
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Near to the horizon trans Planckian modes are heavily suppressed due to the  
discreteness of the spin network state. In our treatment there are no arbitrary  
frequency trans-Planckian  modes, the dispersion relation is modified in a  
sub-luminal way (it does not affect  the horizon structure) and there are no  
singularities from physical quantities,  like the expectation value of the stress  
energy tensor.  
 
One can perform similar analyses for the Unruh and Hartle-Hawking  
vacua.  
 
 



Calculation of Hawking radiation 
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The calculation of the Hawking radiation proceeds in the usual way, 
through the computation of the Bogoliubov coefficients. 

With the states  

and u=t-x*, and U=-exp(u/(4GM)). 

R. Gambini, JP CQG 31, 115003 (2014) 
arXiv: 1312.3595 
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The usual calculation yields an expression for the number operator of the  
out photons in terms of the in states of the form, 
 
 
 
 
With z=u2-u1 and i1,i2 the labels associated with the in and out states. 
 
 
This expression has problems at z=0, hence the addition of the iε term. 
In our approach, discreteness leads to |z|> LPlanck, so that problem is 
eliminated. This is exactly the heuristic cutoff that had been proposed by 
Agulló, Navarro-Salas, Olmo and Parker PRD80, 047503 (2009)! The  
corrected expression for the Hawking radiation is, 

Notice that it is remarkable that the cutoff that arises naturally does not interfere 
with the Hawking radiation. 
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The Casimir effect on a quantum geometry 
 
To compute the Casimir force we will need to compute the integral of the  
expectation value of the T00 component of the stress energy in the region 
between the two shells, integrate it, and compute its derivative with respect to the  
separation of the shells. We will assume the shells are very far away from the origin  
(or black hole) to be able to ignore the centrifugal potential.  
 
We consider a conformally coupled massless scalar field. The 
relevant component of the (improved) energy momentum tensor is, 
 

We begin by considering the modes for a scalar field, 

And imposing Dirichlet boundary conditions at the shells, the fields take the form, 

Which corresponds to a spherical sector from r0 to r0+L  with NI Δ=L 

R. Gambini, J. Olmedo, JP arXiv: 1410.4479 
CQG 32, 11502 (2015) 
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The dispersion relation is typical of a lattice 
and the creation and annihilation operators have the usual commutation relations. 

To compute the expectation value of the stress tensor we need to compute radial 
and time derivatives of the field. We start from Green’s function,  

Which can be readily computed with the fields of the previous slide. 

From there we then compute, 

And the stress energy tensor 

With higher order terms all finite in the limit Δ->0 
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To compute the Casimir force, we conduct the previous calculation for a slab 
of width L0>L and add up all the energies inside the slab L and in the regions 
between L and L0, and differentiate with respect to L, 

L0 

L 

This is the correct result, including the numerical coefficient. If one repeats 
the calculation for the s mode only, one gets the right 1+1D result. 
 
No regularization nor renormalization are needed! 

-L1 0 
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Self gravitating shells               M. Campiglia, R. Gambini, J. Olmedo, JP arXiv:1601:05688 

There exist new Dirac observables associated with the mass of the shell and the 
starting point at scri- from where it is launched. 
 
A lengthy calculation shows that a redefinition like the one in vacuum yields an 
Abelian Hamiltonian and that it survives polymerization and quantization.  
 
One can carry out a quantization in the same space of states considered before, 
tensor a space of square integrable functions for the shell variables. 
 
We at the moment do not know how to find the physical space of states in closed 
form, as we were able to do in the vacuum case.  
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Although we cannot solve for the self-gravitating shell in a closed form, we use 
the partial results we have to motivate an approximate calculation. We will keep 
that the shell has canonical variables related to its mass and initial position at 
scri- and ignore the other details of loop quantum gravity based quantum geometry.  
 
We then study quantum fields living on these shells using the geometric  
optics approximation. 
 
The Bogoliubov coefficients now become operators on the quantum geometry.  



Traditional geometric optics calculation of the Hawking radiation of a collapsing 
shell (Hawking 1975) 
 
Metric:  

Geometric optics: 

In modes:                      Out modes:  

Bogoliubov coefficients:  

Particles produced: 

= some calculations= 
1

e8M!⇡ � 1



Hawking radiation in a collapsing quantum shell: 

We keep from the 
full model that: 

The quantum  
time of arrival: 

Bogoliubov coefficients 
become operators 

One has to be a bit careful about the domain of the quantum time of arrival, 
since the expression is valid for v0>v. It turns out that suitable extensions can 
be found and one can show that the results are independent of them. 

e.g.  (M)



We were able to compute the number operator expectation value., 

For a squeezed state, 

It again has the correct classical limit up to a factor, 

 
 



Although we have done the explicit calculations for a Gaussian squeezed state, one 
can see that for any peaked state in M, v0, similar results would hold. We get  
Hawking radiation. 
 
However, the radiation obtained differs from the one obtained on a classical 
Background space-time. 
 
For instance, information about the initial quantum state persists in correlations 
like, 
 
 
 
Which vanish for the calculation on a classical space-time.  
 
More generally, the quantum density matrix has non-vanishing off-diagonal  
elements. 
 

hN!1N!2i � hN!1ihN!2i

⇢!1,!2



The general expressions are complicated. To illustrate the issue of information  
loss it is good to consider the semiclassical 
limit, ~ ! 0,�vH ! 0 with �M = ~/�vH

Which correctly vanishes for Δ->0. 
 
 
The message seems to be that the new correlations that arise in the  
Hawking radiation due to the fuzziness of the quantum geometry 
(and the horizon) allow to retrieve the information of the state that collapsed 
to form the black hole (the extra term in the expression is essentially the  
Fourier transform of the initial state of the shell).  
 
R. Eyheralde, M. Campiglia, R. Gambini, JP, CQG 34 (2017) no.23, 235015 
also arXiv:1908.04270 
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Bonus: axial symmetry 
 
We choose adapted coordinates  

{x, y,�} � 2 S1 x, y 2 R

The Killing vector is Ka = (@�)
a

Invariance under the symmetry it generates is given by 

with �1 = �2 = 0

Which reduces to                                        with a similar equation for the triads. 

Notice that we choose the Lie derivative proportional to an O(2) rotation.  
This had not been done in previous treatments, 
Husain, JP, MPLA 5, 733 (1990). 
If one does not do this not all degrees of freedom are recovered 
Benguria, Cordero, Teitelboim NPB122, 61 (1977). 
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The most general solution to the symmetry equation is, 

The non-trivial Poisson brackets reduce to 

The determinant of the triad becomes 

And the spatial metric can be written as 
 
And it only depends on the reduced triads. 
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We showed that the Kerr solution solves all the constraints and equations 
of motion that result. 
 
 
We studied the boundary terms needed to make the action differentiable in 
the asymptotically flat context. 
 
 

Details in CQG (2019) no.12, 125009 



25 

Hints at quantization: 

U = exp
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A genuine holonomy in the σ plane (r,θ) and a point holonomy in the φ direction. 
 
One would have two dimensional spin networks with insertions corresponding to 
the φ direction.  
 
There is the issue of the domain of σ, (0,infinity)x(0,π). 
 
A preliminary analysis of the Hamiltonian constraint shows that all added vertices  
are exceptional, which suggests that an implementation of Thiemann’s Hamiltonian 
will close the constraint algebra. 
 
This becomes an ideal arena to test the new ideas for the Hamiltonian that 
Madhavan Varadarajan is proposing. 
 
To be continued… 



Summary:	
•  We	can	solve	LQG	with	spherical	symmetry	in	closed	form.	
•  We	can	formulate	quantum	field	theory	in	quantum	space-times	for	fields	on	

spherically	symmetric	gravity	backgrounds.	
•  It	approximates	quantum	field	theory	in	curved	space	time	very	well.	
•  Discreteness	naturally	regularizes	physical	quantities,	opening	the	possibility	of	

back	reaction	calculations.	
•  Hawking	radiation	can	be	computed	and	the	result	coincides	with	previous	

heuristic	results.	
•  The	Casimir	effect	can	be	computed	and	the	right	dependence	on	separation	is	

obtained.	
•  Self	gravitating	shells	studied	on	the	quantum	space-time,	opening	the		

possibility	of	back	reaction	calculations.	
•  Geometrical	optics	calculations	on	the	quantum	geometry	of		a	shell	

suggest	that	information	may	leak	through	the	Hawking	radiation.		
•  Generalization	to	the	axisymmetric	case	is	on	its	way.	New	arena	to	test	the	

dynamics.	
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•  Happy	birthday	Jurek!	
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