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Motivation

This research is motivated by the following fact established
around the year 2000. (R. Bryant, G. Bor, R.
Montgomery, I. Zelenko, A. Agrachev, ...)
If one considers two balls of different radii r and R, with
r < R, rolling on each other, then such a kinematical
system has an obvious SO(3)×SO(3) global symmetry.
Even if we speacify that the sysytem is rolling without
slipping or twisting, it still has this global symmetry.
But if the ratio of the radii is R : r = 3 : 1, and only if this
ratio is 3 : 1, the dimmension of the local symmetry of such
system jumps from 6 to 14, and what is even more
surprising, the local group of symmetries of the system
becomes isomorphic to the split real form of the simple
exceptional Lie group G2.

2/43



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

Motivation

This research is motivated by the following fact established
around the year 2000. (R. Bryant, G. Bor, R.
Montgomery, I. Zelenko, A. Agrachev, ...)
If one considers two balls of different radii r and R, with
r < R, rolling on each other, then such a kinematical
system has an obvious SO(3)×SO(3) global symmetry.
Even if we speacify that the sysytem is rolling without
slipping or twisting, it still has this global symmetry.
But if the ratio of the radii is R : r = 3 : 1, and only if this
ratio is 3 : 1, the dimmension of the local symmetry of such
system jumps from 6 to 14, and what is even more
surprising, the local group of symmetries of the system
becomes isomorphic to the split real form of the simple
exceptional Lie group G2.

2/43



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

Motivation

This research is motivated by the following fact established
around the year 2000. (R. Bryant, G. Bor, R.
Montgomery, I. Zelenko, A. Agrachev, ...)
If one considers two balls of different radii r and R, with
r < R, rolling on each other, then such a kinematical
system has an obvious SO(3)×SO(3) global symmetry.
Even if we speacify that the sysytem is rolling without
slipping or twisting, it still has this global symmetry.
But if the ratio of the radii is R : r = 3 : 1, and only if this
ratio is 3 : 1, the dimmension of the local symmetry of such
system jumps from 6 to 14, and what is even more
surprising, the local group of symmetries of the system
becomes isomorphic to the split real form of the simple
exceptional Lie group G2.

2/43



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

Motivation

This research is motivated by the following fact established
around the year 2000. (R. Bryant, G. Bor, R.
Montgomery, I. Zelenko, A. Agrachev, ...)
If one considers two balls of different radii r and R, with
r < R, rolling on each other, then such a kinematical
system has an obvious SO(3)×SO(3) global symmetry.
Even if we speacify that the sysytem is rolling without
slipping or twisting, it still has this global symmetry.
But if the ratio of the radii is R : r = 3 : 1, and only if this
ratio is 3 : 1, the dimmension of the local symmetry of such
system jumps from 6 to 14, and what is even more
surprising, the local group of symmetries of the system
becomes isomorphic to the split real form of the simple
exceptional Lie group G2.

2/43



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

Motivation

This research is motivated by the following fact established
around the year 2000. (R. Bryant, G. Bor, R.
Montgomery, I. Zelenko, A. Agrachev, ...)
If one considers two balls of different radii r and R, with
r < R, rolling on each other, then such a kinematical
system has an obvious SO(3)×SO(3) global symmetry.
Even if we speacify that the sysytem is rolling without
slipping or twisting, it still has this global symmetry.
But if the ratio of the radii is R : r = 3 : 1, and only if this
ratio is 3 : 1, the dimmension of the local symmetry of such
system jumps from 6 to 14, and what is even more
surprising, the local group of symmetries of the system
becomes isomorphic to the split real form of the simple
exceptional Lie group G2.

2/43



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

Motivation

This research is motivated by the following fact established
around the year 2000. (R. Bryant, G. Bor, R.
Montgomery, I. Zelenko, A. Agrachev, ...)
If one considers two balls of different radii r and R, with
r < R, rolling on each other, then such a kinematical
system has an obvious SO(3)×SO(3) global symmetry.
Even if we speacify that the sysytem is rolling without
slipping or twisting, it still has this global symmetry.
But if the ratio of the radii is R : r = 3 : 1, and only if this
ratio is 3 : 1, the dimmension of the local symmetry of such
system jumps from 6 to 14, and what is even more
surprising, the local group of symmetries of the system
becomes isomorphic to the split real form of the simple
exceptional Lie group G2.

2/43



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

The simple exceptional Lie group G2

The simple exceptional Lie group G2 is the smallest of the
five exceptional simple Lie groups. They were predicted
to exists by Wilhelm Killing in his classification of
complex simple Lie groups obtained in 1887. It has
complex dimension 14.
There are only two real forms of this group, the compact
one , and the noncompact one, with the latter having
Killing form of indefinite signature.
It was predicted by Killing in 1887 that the noncompact
form of G2 can be realized as a transformation group on
five dimensional manifolds.
This prediction is true. The explicit realization was given
independently by Elie Cartan and Friedrich Engel in
1893. It is as follows:
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Realization of G2 by Cartan and Engel

Consider an open set U of R5 with coordinates
(x , y ,p,q, z) and a 2-plane Dq2 at each point of U spanned
by two vector fields X1 = ∂x + p∂y + q∂p + 1

2q2∂z and
X2 = ∂q.
This defines a rank 2 distribution Dq2 = Span(X1,X2) on U ,
called Cartan-Engel distribution.
Search for local diffeomorphisms φ : U → U such that
φ∗Dq2 = Dq2 . If such local diffeomorphisms exisit they form
a Lie group, called the group of local symmetries of Dq2 .
Finding such diffeomorphisms, might be difficult, so search
for their infinitesimal versions, i.e. vector fields X on U
such that LXDq2 ⊂ Dq2 . If such vector fields exist they form
a Lie algebra, actually, it is the Lie algebra (of the group)
of local symmetries of Dq2 .
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Realization of G2 by Cartan and Engel (continued)

What is the Lie algebra of local symmetries of the
Cartan-Engel distribution Dq2?
Answer (E. Cartan and F. Engel):
The Lie algebra g of symmetries of Dq2 is a 14-dimensional
simple real Lie algebra with not-definite Killing form.
It is isomorphic to the split real form of the exceptional
Lie algebra g2.
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Characterization of the Cartan-Engel distribution

Given any distribution D on a manifold M one considers a
sequence D−1 = D, D−k−1 = [D−1,D−k ], k = 1,2,3, . . . .
At every point x ∈ M the ranks (r−1, r−2, . . . ) of the
respective spaces D−1,D−2, . . . form a growth vector
(D−1,D−2, . . . ) of the distribution D. It is the simplest local
diffeomorphic invariant of D. Sometimes distributions
have a constant growth vector.
And sometimes there exists k ∈ N such that r−k = dimM.
It is easy to see that the growth vector of the Cartan-Engel
distribution is constant and equal to (2,3,5).
Thus Cartan-Engel distribution is a (2,3,5) distribution.
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Characterization of the Cartan-Engel distribution

Two distributions D and D′ are (locally) equivalent on U iff
there exists a (local) diffeomorphism φ : U → U such that
φ∗D = D′.
It turns out that in general two (2,3,5) distributions D and
D′ on U ⊂ R5 are not locally equivalent.
For example, taking a smooth function f = f (q) it is easy to
show that the distribution D2f = Span(X1,X2) with
X1 = ∂x + p∂y + q∂p + f (q)∂z and X2 = ∂q is (2,3,5) for all
fs such that f ′′ 6= 0. But only very few functions f define
D2f locally equivalent to the Cartan-Engel Dq2 .
They are locally equivalent to Dq2 if and only if f satisfies
an ODE:

10f (6)f ′′3 − 80f ′′2f (3)f (5)−51f ′′2f (4)
2
+

336f ′′f (3)
2
f (4) − 224f (3)

4
= 0.
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Cartan’s quartic

It also follows that the Cartan-Engel distribution Dq2 is the
most symmetric among all (2,3,5) distributions.
Moreover, it is the only one that has 14-dimensional group
of local symmetries G2.
In 1910 Cartan gave the full set of local differential
invariants which can be used to determine if two (2,3,5)
distributions are locally equivalent or not.
In particular Cartan associated a g2-valued Cartan
connection ω to any (2,3,5) distribution. Its curvature
Ω = dω + ω ∧ ω is the basic object used to detect if two
(2,3,5) distributions are locally nonequivalent.
For example, for a (2,3,5) distribution to be locally
equivalent to the maximally symmetric distribution D1

2 q2
, it

is neccessary and sufficient that the harmonic curvature
of ω identically vanishes.
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Cartan’s quartic = Harmonic curvature

The harmonic curvature of a (2,3,5) distribution D on M is
called the Cartan quartic

C(D) =ΦABCDζ
AζBζCζD =

Φ0 + 4ζΦ1 + 6ζ2Φ2 + 4ζ3Φ3 + ζ4Φ4.

The functions Φµ, µ = 0,1,2,3,4 on M depend in a
specific way on (quite high! up to order 6!) derivatives of
the data defining the distribution. They form a symmetric
GL(2,R) tensor ΦABCD, A,B,C,D = 0,1 on M.

9/43



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

Cartan’s quartic = Harmonic curvature

The harmonic curvature of a (2,3,5) distribution D on M is
called the Cartan quartic

C(D) =ΦABCDζ
AζBζCζD =

Φ0 + 4ζΦ1 + 6ζ2Φ2 + 4ζ3Φ3 + ζ4Φ4.

The functions Φµ, µ = 0,1,2,3,4 on M depend in a
specific way on (quite high! up to order 6!) derivatives of
the data defining the distribution. They form a symmetric
GL(2,R) tensor ΦABCD, A,B,C,D = 0,1 on M.

9/43



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

Cartan’s quartic = Harmonic curvature

The harmonic curvature of a (2,3,5) distribution D on M is
called the Cartan quartic

C(D) =ΦABCDζ
AζBζCζD =

Φ0 + 4ζΦ1 + 6ζ2Φ2 + 4ζ3Φ3 + ζ4Φ4.

The functions Φµ, µ = 0,1,2,3,4 on M depend in a
specific way on (quite high! up to order 6!) derivatives of
the data defining the distribution. They form a symmetric
GL(2,R) tensor ΦABCD, A,B,C,D = 0,1 on M.

9/43



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

Cartan’s quartic = Harmonic curvature

The harmonic curvature of a (2,3,5) distribution D on M is
called the Cartan quartic

C(D) =ΦABCDζ
AζBζCζD =

Φ0 + 4ζΦ1 + 6ζ2Φ2 + 4ζ3Φ3 + ζ4Φ4.

The functions Φµ, µ = 0,1,2,3,4 on M depend in a
specific way on (quite high! up to order 6!) derivatives of
the data defining the distribution. They form a symmetric
GL(2,R) tensor ΦABCD, A,B,C,D = 0,1 on M.

9/43



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

Goursat form

It is result of E. Gursat that every (2,3,5) distribution can
be locally written in coordinates (x , y ,p,q, z) as
DF = Span(X1,X2) with X1 = ∂x + p∂y + q∂p + F∂z and
X2 = ∂q, F = F (x , y ,p,q, z) such that Fqq 6= 0.
If F = f (q) then the Cartan quartic of the corresponding
(2,3,5) distribution is C(Df (q)) = ζ4Φ4 with

Φ4 =10f (6)f ′′3 − 80f ′′2f (3)f (5)−

51f ′′2f (4)
2

+ 336f ′′f (3)
2
f (4) − 224f (3)

4
.

In general all Φµ are nonzero, and finding Fs having
C(DF ) = 0 results in a system of 5 nasty PDE’s of 6th
order in five variables.
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Summary of part I

Among all (2,3,5) distributions in dimension 5, there is a
subclass, given up to local diffeomorphisms, whose Lie
algebra of infinitesimal symmetries is isomorphic to the
split real form of the simple exceptional Lie algebra g2.
Given a (2,3,5) distribution D on a 5-manifold, one
determines if it is locally diffeomorphically equivalent to the
one with g2 symmetry, by looking at the Cartan’s quartic of
D.
It has g2 symmetry if and only if its Cartan’s quartic
vanishes.
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Real totally null planes

What is the fundamental difference between R4 with a
Riemannian metric x2

1 + x2
2 + x2

3 + x2
4 and R4 with a

Lorentzian metric x2
1 + x2

2 + x2
3 − x2

4 ? Well ... in Lorentzian
case we have null vectors, e.g. n = (0,1,0,1).
What is the fundamental difference between R4 with a
Lorentzian metric x2

1 + x2
2 + x2

3 − x2
4 and R4 with a split

signature metric x2
1 + x2

2 − x2
3 − x2

4 ? Well... in the split case
we have totally null planes, e.g. N0 = Span(n1,n2) with
n1 = (1,0,1,0) and n2 = (0,1,0,1).
A totally null plane is a 2-dimensional vector subspace N of
R4 whose all vectors have vanishing length and are
orthogonal to each other. In other words, the metric g is
zero on N.
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Real totally null planes (continued)

Given a totally null plane N+
0 = Span(n1,n2) with

n1 = (1,0,1,0) and n2 = (0,1,0,1), we can act on it with
the elements a of the orthogonal group SO0(2,2), via:(

a, Span(n1,n2)
)
7→ Span(a · n1,a · n2).

Since the orthogonal group preserves nullity the resulting
space N+

a = Span(a · n1,a · n2) is also totally null.
It follows that the orbit of N+

0 w.r.t. this SO0(2,2) action
forms a cricle

S1
+ = { N+

φ = Span
(
n1(φ),n2(φ)

)
| φ ∈ [0,2π] }

with

n1(φ) = (1,0, cosφ, sinφ), n2 = (0,1,− sinφ, cosφ).
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Real totally null planes (continued)

Any totally null 2-plane N = Span(n1,n2) in
(R4, x2

1 + x2
2 − x2

3 − x2
4 ) defines a line of a bivector

l(N) = Rn1 ∧ n2.
It follows that the bivectors l(N) are either selfdual:
∗l(N) = l(N), or antiselfdual ∗l(N) = −l(N).
We say that a totally null plane N is selfdual or antislefdual
if its corresponding line l(N) is selfdual or antislefdual,
respectively.
For example planes N+

φ from the SO0(2,2) orbit of N+
0 are

all selfdual.
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Real totally null planes (continued)

The plane N−0 = Span(n1,n3) with n1 = (1,0,1,0) and
n3 = (0,1,0,−1) is antiselfdual.
The entire SO0(2,2) orbit of N−0 , which is a cricle

S1
− = { N−φ = Span

(
n1(φ),n3(φ)

)
| φ ∈ [0,2π] }

with n1(φ) = (1,0, cosφ, sinφ), n3(φ) = (0,1, sinφ,− cosφ),
consists of antiselfdual planes.
It follows that every totally null plane N in
(R4, x2

1 + x2
2 − x2

3 − x2
4 ) belongs to either S1

+ or S1
−.

The space Z(N) of all totally null planes in R4 equipped
with the (2,2) signature metric, is a disjoint union of S1

+

and S1
−, Z(N) = S1

+ ∪ S1
−.
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Circle twistor bundle

Let (M,g) be a 4-dimensional manifold M equipped with a
(2,2) signature metric g. Assume that M is orientable and
oriented.
Then, at every point y ∈ M we have a circle S1

+(y) of totally
null selfdual planes N+

φ (y) contained in the tangent space
TyM.
This defines a circle bundle T+(M) = ∪y∈MS1

+(y) with a
projection: π : N+

φ (y) 7→ π(N+
φ (y)) = y .

The bundle T+(M) is called a circle twistor bundle of a
split-signature 4-manifold (M,g).
Note that the existence of this bundle is a specific feature
of signature (2,2). In the other two signatures similar
construction (due to Roger Penrose) leads to sphere
bundles.
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Geometric structure on the circle twistor bundle

The bundle T(M) is very reach in geometric structures, which
are induced on T(M) by the geometry of (M,g). In particular:

Vector fields tangent to the fibers of π : T(M)→ M form the
vertical space V on T(M).
There is a well defined horizontal space H in TT(M),
making it into a direct sum TT(M) = V ⊕H. This is induced
by the Levi-Civita connection of the metric g from M.
Since every point N+

φ (y) of T(M) is a totally null plane
N+
φ (y) at y , we can lift the plane N+

φ (y) from y ∈ M
horizontally to the point N+

φ (y) in T(M). In this way to
every point of T(M) we attach a 2-plane Dφ,y , which is
horizontal. This defines a rank 2 distribution D on T(M).
... One can continue the list of geometric objects on T(M)...
Here we focus only on the distribution D.
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Twistor distribution D on T(M)

The horizontal rank 2 distribution D on T(M) as defined on
the previous slide is called twistor distribution on T(M).
Note that we found a natural rank 2 distribution D on
T(M), which is five dimensional.
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Questions about the twistor distribution

Immediately many questions arise:
What shall we assume about (M,g) for the twistor
distribution D to be

integrable?
(2,3,5)?
if (2,3,5), then: when it is equivalent to the
Cartan-Engel distribution Dq2?
if (2,3,5), then, is it true that any (2,3,5) distribution is
locally equivalent to one of the twistor distributions?
etc, etc,...
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Twistor distribution D on T(M)

Theorem
Twistor distribution D on T(M) is integrable if and only if the
split signature metric g on M has anti-selfdual Weyl tensor.
Moreover, if the selfdual Weyl tensor of g is nonvanishing in
U ⊂ M, then in π−1(U) there are open sets where the
corresponding twistor distribution D is (2,3,5).

Let us assume that the selfdual part of the Weyl tensor of g is
not vanishig over an open set in M. Then, the corresponding
twistor distribution D in T(M) is (2,3,5), and the key question
is: which metrics g have their twistor distributions locally
equivalent to the Cartan-Engel distribution Dq2? (the one with
split G2 symmetry).
This is a difficult question...But...
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Results for a product of surfaces

Theorem
Let (Σ1,g1) be a surface equipped with a Riemannian metric
g1 whose Gaussian curvature is κ, and such that it has a
Killing vector, and let (Σ2,g2) be a surface of constant
Gaussian curvature λ. Consider a 4-manifold M = Σ1 × Σ2
with a product metric g = g1 ⊕ (−g2). Then in order for the
twistor distribution D on T(M) to have local symmetry G2, the
curvatures must satisfy:

(9κ− λ)(κ− 9λ)λ = 0, κ2 + λ2 6= 0.

Obviously these equations can be satisfied only in two cases:
the ratios of the curvatures are 1:9 or 9:1, in which case
both surfaces has constant curvatures,
or the constant curvature surface is flat.21/43
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Results for a product of surfaces

Theorem
If both surfaces (Σ1,g1) and (Σ2,g2) have constant Gaussian
curvatures, respectively, κ, λ, then the Cartan quartic C(D) of
the twistor distribution D on T(M) associated with
(M = Σ1 × Σ2,g = g1 ⊕ (−g2)) is

C(D) = (9κ− λ)(κ− 9λ)h(φ),

where h(φ) is a nowhere vanishing function along the fibers of
T(M)

Thus the cases when the ratio of constant curvatures is equal
1 : 9 or 9 : 1 correspond to twistor distributions with G2
symmetry.
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Results for a product of surfaces

Corollary
The twistor distributions D associated with the 4-manifold being
a product of two spheres S2, whose radii are in the ratio 1 : 3 or
3 : 1 have G2 symmetry.
The same is true for the product of two hyperboloids.

I will comment on the remaining case λ = 0 and (Σ1,g1) with
Gaussian curvature κ and Killing symmetry later.
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Configuration space

We want to describe the space of possible positions for two
(smooth) rigid bodies B1 and B2 that roll on each other in the
3-space R3.

We idealize the surface of body B1 by a surface (Σ1,g1)
with Riemannian metric g1 and the surface of body B2 by a
surface (Σ2,g2) with Riemannian metric g2.
To specify a position of the system, we chose a point x on
Σ1 and a point x̂ on Σ2. These are the points in which the
two surfaces kiss each other.
To fully determine the possition of the system at a given
time, we still need to fix the relative angle φ ∈ [0,2π]
between the tangent spaces Tx Σ1 and Tx̂ Σ2. This is
equivalent to specify a rotation A(φ) which is an orthogonal
transformation A(φ) : Tx Σ1 → Tx̂ Σ2 identifying the tangent
spaces.
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Configuration space

Thus, to specify the position of the system of rolling bodies
at a given time, we need five real numbers (x , x̂ , φ) such
that:

x ∈ Σ1,
x̂ ∈ Σ2,
A(φ) ∈ { orthogonal transformations from the tangent
space at x to Σ1 to the tangent space at x̂ to Σ2 }.

More formally the configuration space of the system is

T (Σ1,Σ2) = { A(φ) : Tx Σ1 → Tx̂ Σ2 },

clearly a circle bundle over the Cartesian product
M = Σ1 × Σ2, with fibers being circles S1 of orthogonal

transformations A(φ) =

(
cosφ − sinφ
sinφ cosφ

)
.
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Identifying configuration space with twistor space

There is a simple bundle isomorphism between the
configuration space T (Σ1,Σ2) and the twistor circle
bundle T(Σ1 × Σ2).
For this we need to show how a point
(x , x̂ ,A(φ)) ∈ T (Σ1,Σ2) defines a point
N+
φ (y) ∈ T(Σ1 × Σ2).

Of course y = (x , x̂). The only problem is how to define
N+
φ .
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Identifying configuration space with twistor space

A moment of reflexion yields

A(φ) =

(
cosφ − sinφ
sinφ cosφ

)
7→

graph(A(φ)) = (a,b,a cosφ− b sinφ,a sinφ+ b cosφ)

= a(1,0, cosφ, sinφ) + b(0,1,− sinφ, cosφ)
)

= Span
(
n1(φ),n2(φ)

)
= N+

φ ⊂ R4.

This identifies bundles T (Σ1,Σ2) and T(Σ1 × Σ2). This is
to say that the positions of the system of rolling bodies
are totally null selfdual planes in the semi-Riemanian
manifold M = Σ1 × Σ2, g = g1 ⊕ (−g2).
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Rigid bodies rolling without slipping or twisting

Particular rolling

When the surfaces Σ1 and Σ2 are rolling on each other,
they draw a curve γ(t) = (x(t), x̂(t), φ(t)) in the
configuration space T (Σ1,Σ2), or via the described
bundle isomorphism, a curve γ(t) = (x(t), x̂(t),N+

φ (t)) in
the circle twistor bundle T(Σ1 × Σ2).
There is a particular kind of rolling, such that the
corresponding rolling curve γ(t) is always tangent to the
twistor distribution D in T(Σ1 × Σ2).
What this particular kind of rolling means physically?
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Rigid bodies rolling without slipping or twisting

Particular roling

The tangency condition for the curve γ, means that the
velocity γ̇ of the system is linearily restricted; at each
point c = (x , x̂ , φ) of the configuration space T (Σ1,Σ2) it is
always at the 2-dimensional vector subspace Dc of the full
5-dimensional tangent space TcT (Σ1,Σ2).
Since the twistor distribution is (2,3,5), this particular kind
of rolling describes nonholonomic movement with three
linear constraints on velocities.
Do we know any natural three linear constraints on
velocities for the rolling bodies?
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Rolling without slipping or twisting

Suppose that we want to impose nonholonomic constraint of
‘rolling without slipping or twisting’ on our system. For this
we consider a curve γ(t) = (x(t), x̂(t),A(φ(t))) in the
configuration space T (Σ1,Σ2). It draws two curves: x = x(t) on
Σ1, and x̂ = x̂(t) on Σ2. These curves are just trajectories of
the points of contacts.

γ(t) corresponds to the movement without slipping iff
A(φ(t))ẋ = ˙̂x – two linear conditions
γ(t) corresponds to the movement without twisting iff for
every vector field v(t) which is parallel along x(t), the
corresponding A(φ(t)) transformed vector field A(φ(t))v(t)
is parallel along x̂(t) – one linear condition.
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No slipping no twisting means horizontality

Theorem
The curve γ(t) in T (Σ1,Σ2) corresponds to rolling without
slipping or twisting of the two surfaces Σ1 and Σ2 if and only
if, when viewed in the circle twistor bundle T(Σ1 × Σ2), it is
always tangent to the twistor distribution D.
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Rigid bodies rolling without slipping or twisting

Reinterpretation of the results about M = Σ1 × Σ2

Circle twistor bundle for the manifold M = Σ1 × Σ2 with
the metric g = g1 ⊕ (−g2) is the configuration space of
two rolling surfaces (Σ1,g1) and (Σ2,g2).
If the surfaces roll on each other ‘without slipping or
twisting’ their velocity space is restricted, in such a way
that the possible velocities can only be tangent to the
twistor distribution.
If the twistor distribution on the circle twistor bundle
T(M) of the product manifold M = Σ1 × Σ2 has G2
symmetry, then also the kinematics of the system of the
rolling surfaces Σ1 and Σ2 has G2 symmetry.
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Reinterpretation of the results about M = Σ1 × Σ2

In paricular the system of two spheres of respective radii
with ratio 1 : 3 or 3 : 1 which roll on each other without
slipping or twisting has G2 symmetry. But also the system
of two hyperboloids of respective ‘hyperbolic radii’ with
ratio 1 : 3 or 3 : 1 have this symmetry.
Are there other pairs of rigid bodies having this
symmetry?
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Reinterpretation of the results about M = Σ1 × Σ2

Well...Even the fact of G2 symmetry for constant curvature
surfaces with the curvature ratio 9 : 1 is very surprising.
The Cartan quartic of a (2,3,5) distribution is a tensor with
five components, so its vanishing for the twistor
distribution D of two surfaces, requires a solution to five
nonlinear PDEs. They are of 6th order in terms of the
derivatives of the metrics g1 and g2 of the rolling
surfaces.This system of PDEs is highly overdetrmined,
also because one part of the unknowns depends on Σ1
only, whereas the other part depends on Σ2 only. A lot of
(very messy) equations appear, and it was hard to believe
that they admit any solution.
People tended to believe that the constant curvature
solution with curvature ratios 9 : 1 is miraculous enough,
not to expect any other solution.

34/43



(2, 3, 5) distributions and G2
Bundles of totally null planes for (2, 2) signature metrics

Rigid bodies rolling without slipping or twisting

Reinterpretation of the results about M = Σ1 × Σ2

Well...Even the fact of G2 symmetry for constant curvature
surfaces with the curvature ratio 9 : 1 is very surprising.
The Cartan quartic of a (2,3,5) distribution is a tensor with
five components, so its vanishing for the twistor
distribution D of two surfaces, requires a solution to five
nonlinear PDEs. They are of 6th order in terms of the
derivatives of the metrics g1 and g2 of the rolling
surfaces.This system of PDEs is highly overdetrmined,
also because one part of the unknowns depends on Σ1
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Reinterpretation of the results about M = Σ1 × Σ2

Daniel An and me did not know all of this. We wrote the
PDEs and were making assumptions on g1 and g2 to make
them managable. In particular we simplified everything to
the case when one surfaces has Killing symmetry, and the
other has constant curvature.
Let us thus examine the left case when λ = 0, and the
other surface has a Killing symmetry.
Surprisingly calculation of the Cartan quartic in this case is
not only manegable, but also the system of ODE’s its
vanishing imposes on the metric functions of g1 can be
solved to the very end.
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Surfaces of revolution on the plane with G2 symmetry

Theorem
Modulo homotheties all metrics corresponding to surfaces with
a Killing vector, which when rolling on the plane R2 ‘without
slipping or twisting’, have the velocity distribution D with local
symmetry G2 are given by:

g1o =ρ4dρ2 + ρ2dϕ2,

g1+ =(ρ2 + 1)2dρ2 + ρ2dϕ2,

g1− =(ρ2 − 1)2dρ2 + ρ2dϕ2,
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Theorem (continued)

Theorem
or, collectively as:

g1 = (ρ2 + ε)2dρ2 + ρ2dϕ2, where ε = 0,±1.

Their curvature is given by

κ =
2

(ρ2 + ε)3 .
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Surfaces of revolution on the plane with G2 symmetry

Theorem
Let U be a region of one of the Riemann surfaces (Σ1,g1) of
the previous Theorem, in which the curvature κ is nonnegative.
In the case ε = +1, such a region can be isometrically
embedded in flat R3 as a surface of revolution. The embedded
surface, when written in the Cartesian coordinates (X ,Y ,Z ) in
R3, is algebraic, with the embedding given by

(X 2 + Y 2 + 2)3 − 9Z 2 = 0, ε = +1.
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Theorem (continued)

Theorem

In the case ε = −1, one can find an isometric embedding in R3

of a portion of U given by ϕ ∈ [0,2π[, ρ ≥
√

2. This embedding
gives another surface of revolution which is also algebraic, and
in the Cartesian coordinates (X ,Y ,Z ), given by

(X 2 + Y 2 − 2)3 − 9Z 2 = 0, ε = −1.

In the case ε = 0, one can embed a portion of U with ρ ≥ 1 in
R3 as a surface of revolution

Z = f (
√

X 2 + Y 2), with f (t) =

∫ t

ρ=1

√
ρ4 − 1 dρ.
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How do they look?

Rysunek: The Mathematica print of the three surfaces of revolution,
whose induced metric from R3 is given, from left to right, by
respective metrics g1−, g1+ and g1o. The middle figure embeds all
(Σ1,g1+). In the left figure only the portion of (Σ1,g1−) with positive
curvature is embedded, and in the right figure only points of (Σ1,g1o)
with ρ > 1 are embedded. It is why the left and right figures have
holes on the top. All three surface, when rolling on a plane ‘without
twisting or slipping’ have velocity space Dv with symmetry G2.
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An update from Robert Bryant

Dear Pawel,
I hope that this finds you well.
Igor Zelenko came to visit me this past week, and we talked a
little bit about your G2 rolling surface example in the context of
doing computations for Cartan-type 2-plane fields.
It reminded me of the left-over question of determining
whether there are any other examples besides the constant
curvature ones and your rotationally symmetric examples
rolling over the plane, so I took another look at the
calculations and at the formula that I worked out for Cartan’s
C-tensor in this case.
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An update from Robert Bryant

It took a little thinking, but, based on this, I now have a proof
(not too bad) that, if a pair of Riemannian surfaces has the
G2 rolling distribution, then at least one of the two surfaces
has to have constant Gauss curvature.
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An update from Robert Bryant

I still don’t know whether, if one fixes a constant Gauss
curvature of one surface, the other surface has to have a
rotational symmetry (which was your ansatz), but there is a
clear line of attack for that, and, when I next have some time to
look at this question, I’ll see whether or not I can resolve it.
What is clear is that, for each fixed constant Gauss
curvature of the one surface, there is at most a
finite-dimensional space of isometry classes of germs of
metrics that can roll over it with G2 rolling distribution, and
such a metric, if it exists, is completely determined by its
5-jet at one point.
Yours,
Robert
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