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 The Universe is approximately homogeneous and isotropic, with 
cosmological perturbations. 

 In our era of precision cosmology, observational data can be used 
to falsify models.

 Observations might be indicating some possible tensions. 
 Collections of observations may provide statistical significance.

IntroductionIntroduction  



IntroductionIntroduction  

 Precision cosmology opens a window to observe genuine QUANTUM 
COSMOLOGY effects.

 Perturbations need a gauge invariant  descriptions  (Bardeen, 
Mukhanov & Sasaki).

 The passage to quantization asks for a canonical formulation 
(Langlois, Pinto-Neto, Mena Marugán, Castelló Gomar, Olmedo, 
Fernández-Méndez, Lewandowski, Dapor, Puchta...).

 A complete quantum  treatment should include the background 
(Halliwell & Hawking, Shirai & Wada...).



We consider an FLRW cosmology coupled to a scalar field. 

For simplicity, we assume compact flat (three-torus) spatial topology. 

We focus the dicussion on SCALAR pertubations. 

We truncate the action at quadratic  order in perturbations, with the 
background treated exactly up to that order.

ModelModel

We want to study quantum cosmology 
modifications to the Mukhanov-Sasaki 
equations for primordial fluctuations. 



The FLRW system is described by a scale factor and (the zero-mode of) a
 homogeneous scalar field:                  We set

We expand the inhomogeneities in a (real) Fourier basis (sines and cosines).

Modes are labeled by a wave vector         (with positive first non-vanishing 
component). The eigenvalue of the Laplacian is 

Scalar perturbations  are described by the Fourier coefficients of the scalar 
field, spatial metric (trace and traceless), lapse               and shift 

The system as a whole is symplectic:  zero modes + perturbations.      

(a ,φ).

Classical systemClassical system
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Constraints: 
Linear perturbative constraints (Hamiltonian constraint + diffeo constraint)
+ Zero-mode of the Hamiltonian constraint.

                   Homogeneous lapse                                               

                                                                         : momenta.
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Classical systemClassical system



Gauge invariance Gauge invariance 

  We change the variables for the perturbations to a new canonical set: 

 The Mukhanov-Sasaki gauge invariants 

 Their momenta           which are also gauge invariants.
 A criterion is needed to fix the contribution of         to them.

 An Abelianization of the linear perturbative constraints (possible at
 the truncation order). 

 Suitable momenta of these, parametrizing possible gauge fixations. 

v n⃗ ,± .

πv n⃗ ,±
,

v n⃗ ,±



Full systemFull system  

 We extend the canonical transformation to the full system, at the    
considered perturbative order.

We call                               their momenta, and                    the old 
perturbative variables.

 Likewise for        with a flip of sign in the corrections.                    

 The corrections are QUADRATIC in the perturbations.                         
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New Hamiltonian New Hamiltonian 

 Since the change of zero modes is quadratic in the perturbations, 
the new scalar constraint at our truncation order is

 So, the perturbative contribution to the new scalar constraint is

                                                                (up  to gauge).

This gives precisely the Mukhanov-Sasaki Hamiltonian.

H 0+∑b
(wb

−w̃b)
∂ H 0
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H 2
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New Hamiltonian New Hamiltonian 

 The total Hamiltonian of the system becomes

               Redefined Lagrange  multipliers. 

 It should include backreaction at the considered perturbative order.

 The perturbative contribution to the scalar constraint is quadratic in
 the Mukhanov-Sasaki variables and momenta, and linear in   

H = N̄ 0 [ H 0+∑n⃗ ,±
H̆ 2

n⃗ ,± ]+∑n⃗ ,±
G n⃗ ,± H̆ 1

n⃗ ,±
+∑n⃗ ,±

K n⃗ ,± H ↑1
n⃗ ,± .

πφ̃ .

Abelianized.



Approximation: Quantum geometry effects
are especially relevant in the background.

Hybrid quantizationHybrid quantization

 Adopt a (loop)  quantum  scheme for zero modes and quantize the 
perturbations à la Fock. The scalar constraint couples them.

 We assume:
a) Zero modes commute with perturbations after quantization. 
b) Functions of     act by multiplication. φ̃



Fock representation Fock representation 

A Fock quantization is fixed in QFT up to unitary equivalence by:

The background isometries.

The unitarity of the resulting Heisenberg evolution. 

 The choice of representation does not fix the vacuum: any Fock state 
is valid.



Perturbative constraints Perturbative constraints 

 We represent the linear perturbative constraints  (or an integrated 
version of them) as derivatives (or as translations). 

 Then, physical states are independent of their momenta (gauge d.o.f.). 

 Physical states depend only on zero modes and gauge invariants (no 
gauge fixing). 

 They still must satisfy the Hamiltonian (or scalar) constraint given 
by the FLRW and the Mukhanov-Sasaki contributions. 

.



Hamiltonian constraint Hamiltonian constraint 

 This global Hamiltonian constraint can be written

where

Even:                                                           Odd: 

                                        The same

 
                                                        All mode independent
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                                               QC: Factor ordering/regularization.
 Quantum constraint
                                 Symmetrization in the linear momentum.

 It is quadratic in the momentum of the zero mode of the scalar field. 

 The linear perturbative term goes with the derivative of the potential. 

.

H S=
1
2

[πφ̃
2−H 0

(2)−Θe−Θoπφ̃ ] .

Hamiltonian constraintHamiltonian constraint  



Consider states for which the dependence on the FLRW geometry and 
the inhomogeneities         split: 

The FLRW state is normalized, and evolves in     as:

     is an evolution CLOSE to the unperturbed one, with generator            

Born-Oppenheimer ansatzBorn-Oppenheimer ansatz

Ψ=ξ(ã , φ̃)ψ(N , φ̃).

ξ(ã , φ̃)=Û (ã , φ̃)χ(ã).

(N )

Û ̂̃H 0 .

φ̃



Approximation: Disregard transitions from     to other FLRW states.

Taking expectation values in the FLRW geometry, we get a 
quantum constraint for the Mukhanov-Sasaki field:

If we can neglect the first and last terms:                     
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Schrödinger-like 
equation for the 
gauge invariant 
perturbations 

Born-Oppenheimer ansatzBorn-Oppenheimer ansatz

ξ



Mukhanov-Sasaki equationsMukhanov-Sasaki equations

Moreover, BY ONLY  assuming a direct effective dynamics for the 
inhomogeneities, we get the modified Mukhanov-Sasaki equations:

Conformal time:                                          Recall that

The expectation values give the quantum corrected mass,  which is 
mode independent. 

The effective equations are hyperbolic in the ultraviolet regime.       
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Example: LQCExample: LQC

With the standard variables           and   (v ,b)
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Neglecting backreaction



Possible strategies:

Compute the quantum expectation values numerically.    

Use an interaction picture around the massless or the de Sitter case.

For suitable states, one often adopts the effective LQC description.     

  

Example: LQCExample: LQC



Initial conditions on the background within effective LQC:

Quantum effects affect modes between the scale of LQC and

The effects may be relevant and compatible with observations
if those modes are entering the Hubble horizon today.  

k1=ωn1
/aB

k2=ωn2
/a B

Standard

Quantum 
  effects

Kinetic    Potential≈ (k K−P)

Initial conditionsInitial conditions

k K−P .



For backgrounds where this happens, one gets short-lived inflation.

Modes affected by quantum effects do not  first leave the Hubble 
horizon in the slow-roll regime.

Those modes are not in a Bunch-Davies vacuum.  

The power spectrum is modulated  by a factor that depends on the 
Bogoliubov coefficients of the new vacuum state. 

Vacuum of the perturbations: there are several proposals  (Martín-de 
Blas & Olmedo, Ashtekar & Gupt...).

Initial conditionsInitial conditions



Conclusions Conclusions 

We have studied (scalar) perturbations at quadratic order in the action.

At this truncation order, we have found a canonical transformation for 
the full system leading to Mukhanov-Sasaki gauge invariants.

In a hybrid quantization, physical states depend only on the 
quantum background  and the Mukhanov-Sasaki field.

We have derived Mukhanov-Sasaki equations  modified with 
quantum corrections (beyond homogeneous effective descriptions).

In order to extract predictions, it is essential to determine the initial 
conditions for the background and the vacuum of the perturbations.  



Thank you!Thank you!
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