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Limitation of the global notions in GR

• The event horizon definition of BH requires knowledge of the
entire space-time all the way to future null infinity.

• The use of stationary space-times to derive black hole
thermodynamics is not ideal.

• The global nature of event horizon makes it difficult to use in
quantum theory. In order for a definition of the horizon of
black hole to make sense, one needs to be able to formulate it
in terms of phase space functions which can be quantized.

• The global notions of ADM energy and ADM angular
momentum are of limited use, because they do not distinguish
the mass of black holes from the energy of surrounding
gravitational radiation.
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Quasi-local notion of Isolated Horizon

• The notion of isolated horizon is defined quasi-locally as a
portion of the event horizon which is in equilibrium
[Ashtekar, Beetle and Fairhurst, 1998].
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Quasi-local notion of Isolated Horizon

• (Weakly) Isolated Horizon: A three-dimensional null
hypersurface ∆ of a space-time (M, gab) is said to be a
weakly isolated horizon if the following conditions hold:

(1). ∆ is topologically R× S with S a compact two-dimensional
manifold;

(2). The expansion θ(l) of any null normal l to ∆ vanishes;
(3). The field equations hold at ∆, and the stress-energy tensor

Tab of external matter fields is such that, at ∆, −T a
b l

b is a
future-directed and causal vector for any future-directed null
normal la.

(4). An equivalence class [l ] of future-directed null normals is
equipped with ∆, with l ′ ∼ l if l ′ = cl (c > 0 a constant),
such that Llωa , 0 for all l ∈ [l ], where ωa is related to the
induced derivative operator Da on ∆ by Dalb , ωalb.
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Thermodynamics of Isolated Horizon

• There are indeed nontrival solutions to Einstein’s equations,
which including IHs surrounded by radiations in spacetime
[Lewandowski 1999; Ashtekar, Beetle, Dreyer, Fairhurst, Krishnan,

Lewandowski, Wisniewski, 2000] .

• The definition of weakly isolated horizon implies automatically
the zeroth law of IH mechanics as the surface gravity
κ̃(l) ≡ ωal

a is constant on ∆
[Ashtekar, Beetle and Fairhurst, 1998].

• Let us consider an 4-dimensional spacetime region M with an
isolated horizon ∆ as an inner boundary.
The Hamiltonian framework for M provides an elegant way to
define the quasi-local notions of energy E∆ and angular
momentum J∆ associated to ∆. Then the first law of IH
mechanics holds as [Ashtekar, Beetle and Lewandowski, 2001]

δE∆ =
κ̃(l)

8πG
δa∆ + Φ(l)δQ∆ + Ω(l)δJ∆.
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Kinematical structure of LQG
• There is a unique gauge and diffeomorphism invariant cyclic

representation of the holonomy-flux ∗−algebra, given by the
Ashtekar-Lewandowski measure µAL [LOST, 2005].

• The kinematical Hilbert space of LQG is spanned by spin
network states, |Γ, {je}, {iv} >, over graphs in the spatial
manifold M

Figure: Dona and Speziale, arXiv:1007.0402.
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Quantum isolated horizon

• In the case when M has a boundary H, some edges of spin
networks in M may intersect H and endow it a quantum area
at each intersection [Rovelli, 1996].

Figure: Ashtekar, Baez and Krasnov, gr-qc/0005126.
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Palatini formalism
Consider the Palatini action of GR on M:

S [e,A] = − 1

4κ

∫
M
εIJKLe

I∧eJ∧F (A)KL+
1

4κ

∫
τ∞

εIJKLe
I∧eJ∧AKL

• For later convenience, we define the solder form ΣIJ ≡ e I ∧ eJ .

• The second-order variation of the Palatini action leads to the
conservation identity of the symplectic current as

1

κ
(

∫
M1

δ[1(∗Σ)IJ ∧ δ2]A
IJ −

∫
M2

δ[1(∗Σ)IJ ∧ δ2]A
IJ

+

∫
∆
δ[1(∗Σ)IJ ∧ δ2]A

IJ) = 0,

where (∗Σ)KL =
1

2
εIJKLΣIJ , and M1,M2 are spacelike

boundary of M.
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Basic variables in time gauge

• The symplectic flux across the horizon can be expressed as a
sum of two terms corresponding to the 2D compact surfaces
H1 = ∆ ∩M1 and H2 = ∆ ∩M2.

• Let the so(3, 1) connection AIJ and the cotetrad e I be in the
time-gauge in which ea

0 is normal to the partial Cauchy
surface M, reducing the internal local gauge group from
SO(1, 3) to SO(3).

• The pull-back of the spacetime variables to M can be written
in terms of the Ashtekar-Barbero variables as

Ai = γA0i − 1

2
εi

jkA
jk ; Σi = εi

jk Σjk .
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Symplectic structure in time gauge

For spherically symmetric IHs with a given area a0, the
symplectic structure can be obtained on M with the inner
boundary H = M ∩∆ as [Engle, Noui, Perez, Pranzetti, 2009]

Ω(δ1, δ2) =
1

2κγ

∫
M

2δ[1Σi ∧δ2]Ai−
1

κ

a0

π(1− γ2)

∮
H

2δ[1Ai ∧δ2]Ai .

• The symplectic structure consists of a bulk term, the standard
symplectic structure used in LQG, and a surface term, the
symplectic structure of an SU(2) Chern-Simons theory on H.

• In terms of the Ashtekar-Barbero variables, the isolated
horizon boundary conditions take the form

Σi = − a0

π(1− γ2)
F i (A).
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Approaches to the entropy calculation for IH

• Choices of the gauge group for the Chern-Simons theory
• U(1) group [Ashtekar, Baez, Krasnov, 2000]:

Applicable to arbitrary axi-symmetric IH
[Ashtekar, Engle, Broeck, 2004].

• SU(2) group [Engle, Noui, Perez, Pranzetti, 2009]:
Spherically symmetric IH.

• With either of the above choices, detail analysis can estimate
the number of surface Chern-Simons states on the punctured
horizon consistent with the given area.

• For the states counting, one usually uses the spectrum of the
standard area operator in LQG
[Rovelli, Smolin, 1995; Ashtekar, Lewandowski,1997]

aS = 8πγ`2
p

∑
I

√
jI (jI + 1)
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Calculation of the entropy for IH

• By the standard area operator
• The leading order expression of the entropy agrees with the

Hawking-Bekenstein formula by choosing the Barbero-Immirzi
parameter γ ≈ 0.274, with either U(1) or SU(2) Chern-Simons
theories [Domagala, Lewandowski, 2004; Ghosh, Mitra, 2005;
Agullo, Barbero, Borja, Diaz-Polo, Villasenor, 2009].

• The sub-leading order expressions of the entropy are
logarithmic terms for both gauge groups, but the front

coefficients are different: −1

2
for U(1) while −3

2
for SU(2).

• Alternative choice: the flux-area operator for IH
[Barbero, Lewandowski, Villasenor, 2009]

aflux
H = 8πγ`2

p(
∑

p

|mp|)

Problem: The Barbero-Immirzi parameter takes different
values for even and odd values of the horizon ”area”.
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Calculation of the entropy for IH

• The above isolated horizon framework can be generalized to
arbitrary even-dimensional spacetimes [Bodendorfer, Thiemann,

Thurn, 2013], where the horizon degrees of freedom are
encoded in the SO(2n)-Chern-Simons theory.

• Limitations:
• The Chern-Simons theory description of IH degrees of freedom

requires that the area of the horizons has to be fixed.
• The framework is only valid for even-dimensional spacetime,

since Chern-Simons theory can only lives on odd-dimensional
manifold.

• Is there any way out?

• BF theory approach:
• SO(1, 1) BF theory description of IH

[Wang, YM, Zhao, 2014; Wang, Huang, 2015]
• SU(2) BF theory description of spherically symmetric IH

[Pranzetti, Sahlmann, 2015]
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Near horizon coordinates

• In the neighborhood of ∆, we choose the Bondi-like
coordinates given by (v , r , x i ), i = 1, 2, where the horizon is
given by r = 0 [Lewandowski, 2000].

Figure: Krishnan, arXiv:1303.4635.
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Gauge choice of the tetrad

• To describe the geometry near the isolated horizon ∆, it is
convenient to employ the Newman-Penrose formalism with
the null tetrad (l , n,m, m̄) adapted to ∆, such that the real
vectors l and n coincide with the outgoing and ingoing future
directed null vectors at ∆ respectively.

• We choose an appropriate set of co-tetrad fields which are
compatible with the metric as:

e0 =

√
1

2
(αn +

1

α
l), e1 =

√
1

2
(αn − 1

α
l),

e2 =

√
1

2
(m + m̄), e3 = i

√
1

2
(m − m̄),

where α(x) is an arbitrary function of the coordinates.

• Each choice of α(x) characterizes a local Lorentz frame in the
plane I formed by {e0, e1}.
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Horizon degrees of freedom

• The horizon integral of the symplectic current is reduced to

1

κ

∫
∆
δ[1(∗Σ)IJ ∧ δ2]A

IJ =
2

κ

∫
∆
δ[1Σ23 ∧ δ2]A

01.

• It turns out that the 2-form Σ23 is closed.
Hence we can define an 1-form B locally on ∆ such that

Σ23 = dB.

• Under a SO(1,1) boost, A01 transforms as a SO(1,1)
connection, and Σ23 is in its adjoint representation.

• In terms of Ashtekar-Barbero variables, the full symplectic
structure can be obtained as

Ω(δ1, δ2) =
1

2κγ

∫
M

2δ[1Σi ∧ δ2]Ai +
1

κ

∮
H

2δ[2B ∧ δ1]A
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Quantum BF theory with sources

• To adapt the structure of LQG in the bulk, the boundary BF
theory is intersected by the spin networks, and satisfies

F = dA = 0, dB =
Σ1

2κ

• Let’s assume that the graph Γ underling a spin network state
intersects H by n intersections: P = {pi |i = 1, · · · , n}.
For every intersection pi we associated a small enough
bounded neighborhood si . Then the physical degrees of
freedom of our sourced BF theory are encoded in

fi =

∫
si

dB =

∮
∂si

B

• We can obtain the quantum Hilbert space of the BF theory
with n intersections as: HPH = L2(Rn).
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Quantum horizon boundary condition

• Consider the bulk kinematical Hilbert space HPM defined on a
graph Γ ⊂ M with P as the set of its end points on H.
HPM can be spanned by the spin network states
|P, {jp,mp}; · · · >, where jp and mp are respectively the spin
labels and magnetic numbers of the edge ep with p ∈ P.

• The integral Σ1(H) =

∫
H

Σ1 can be promoted as an operator:

Σ̂1(H)|P, {jp,mp}; · · · >= 16πγ`2
p

∑
p∈Γ∩H

mp|P, {jp,mp}; · · · > .

• The topology of the horizon H imposes an additional global
constraint: ∑

p∈Γ∩H

mp = 0.
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Solving the quantum boundary condition

• The equations of the boundary BF theory motive us to input
the quantum version of the horizon boundary condition as

(Id ⊗ f̂i (si )−
Σ̂1(si )

2κ
⊗ Id)(Ψv ⊗Ψb) = 0,

where Ψv ∈ HPM and Ψb ∈ HPH .

• The space of kinematical states on a fixed Γ, satisfying the
boundary condition, can be written as

HΓ =
⊕

{jp ,mp}p∈Γ∩H

HPM({jp,mp})⊗HPH ({mp}),

where HPH ({mp}) denotes the subspace corresponds to the
spectrum {mp} in the spectral decomposition of HPH with
respect to the operators f̂p on the boundary.
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Area constraint

• The imposition of the diffeomorphism constraint implies that
one only needs to consider the diffeomorphism equivalence
class of quantum states.
Hence, in the following states counting, we will only take
account of the number of intersections on H, while the
possible positions of intersections are irrelevant.

• We employ the flux-area operator âflux
H in the bulk Hilbert

space HPM with a horizon boundary H, corresponding to the

classical area

∫
H
|dB| of H, and thus have the area constraint:

∑
p∈P
|mp| = a, mp ∈ N/2,

where a =
aH

8πγ`2
p

.
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States counting

• For a given horizon area aH , the horizon states satisfying the
boundary condition are labelled by sequences (v1, · · · , vn)
subject to the global constraint and area constraint, where
vi = 2mi are integers.

• We assume that for each given ordering sequence (v1, · · · , vn),
there exists at least one state in the bulk Hilbert space of
LQG, which is annihilated by the Hamiltonian constraint.

• By the generating function method [Barbero, Lewandowski,

Villasenor, 2009], the dimension N of the horizon Hilbert space
compatible with the given macroscopic horizon area equals to
the coefficient of the term z0x2a in the expansion of the
generating function:

G (x , z) =

(
1−

∞∑
n=1

(zn + z−n)xn

)−1

.
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Entropy of IH

• The entropy for such an isolated horizon is given by

S = lnN =
ln 3

πγ

aH

4`2
p

− 1

2
ln

aH

`2
p

+ ln
4
√
γ

3
.

• If we fix the value of the Barbero-Immirzi parameter as

γ =
ln 3

π
, which coincides with its value for the even 2a of

flux-area in Chern-Simons theory, the Bekenstein-Hawking
area law can be obtained by the leading term.

• The quantum correction to the Bekenstein-Hawking area law

in our approach is the logarithmic term with coefficient −1

2
,

which coincides with its value in U(1) Chern-Simons theory,

and a constant term ln
4
√
γ

3
.
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Generalization to Arbitrary Dimensions

• One could also employ the spectrum of standard area operator
in LQG for the states counting. Then the entropy formula
would again be similar to that of U(1) Chern-Simons theory.

• The above BF theory approach admits extension to arbitrary
dimensional horizons [Wang, Huang, 2014].

• While the boundary theory is still SO(1, 1) BF theory with
sources, the bulk theory would be LQG based on SO(D)
connections [Bodendorfer, Thiemann, Thurn, 2011].

• The leading order expression of the entropy for an arbitrary
dimensional IH reads

S = lnN =
ln 3

2πγ

aH

4G~
.

• The value of the Barbero-Immirzi parameter is fixed as

γ =
ln 3

2π
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Summary and Remarks

• The quasilocal notion of isolated horizon lays down a suitable
framework to study black hole entropy by quantum gravity.

• Loop quantum gravity provides a fundamental scenario to
account for the statistic origin of the isolated horizon entropy.

• In the Chern-Simons theory description of the horizon, the
boundary degrees of freedom are encoded in the
Chern-Simons connection,
while in the BF theory description, the connection becomes
pure gauge, and the non-trivial degrees of freedom of the
horizon are all encoded in the B field.

• The entropy formula of IH derived from the BF theory
coincide with one case of the Chern-Simons theory up to the
sub-leading term, indicating the same value of
Barbero-Immirzi parameter and the same coefficient of the
sub-leading logarithmic term.
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Summary and Remarks

• In the BF theory approach, the area of the horizons is not
fixed, rather it is encoded in the dynamical B field.
Thus the covariant phase space of the system is enlarged so
that all spacetime solutions with any isolated horizons as inner
boundaries are included.

• The BF theory explanation of horizon entropy in LQG is
applicable to general IHs in arbitrary dimensions.

• In the generalization to arbitrary dimensional spacetimes based
on SO(D) connections, the value for the Barbero-Immirzi

parameter, γ =
ln 3

2π
, is dimension independent.
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Summary and Remarks

• In 4d spacetime, the different choices of connection
formulations imply different values for the Barbero-Immirzi
parameter by the entropy calculations. This provides the
possibility to determine the internal gauge group of LQG from
other considerations or experiments.

• In the current entropy calculation, one calculates the
dimension of the horizon Hilbert space compatible with the
given macroscopic horizon area. This treatment is essentially
to consider only spherically symmetric IHs.

• To further consider more general cases, one would need to
introduce the notions of multipole moments of IHs.
The related open issues are being studied
[Ashtekar, Khera, Lewandowski, Song, YM,...].
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Happy Birthday! Jurek
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