Second law protection theorem for Lorentz-violating black holes

Jorma Louko

School of Mathematical Sciences, University of Nottingham

Jurekfest, University of Warsaw, 16–20 September 2019

P. Ezra, JL and W. Smith, in preparation
Plan

1. Einstein gravity Penrose process
 ▶ Splitting, collisions, tether...

2. Covariant Lorentz violation
 ▶ Einstein-Æther

3. Lorentz-violating Penrose process
 ▶ Spherical symmetry
 ▶ Splitting

4. Results
 ▶ Energy extraction admission theorem
 ▶ Energy extraction no-go theorem

5. Upshots
1. **Einstein gravity Penrose process**

Rotating black hole

Splitting version Penrose and Floyd 1971

1. Drop in shuttle
 + payload (waste)
2. Eject payload in ergoregion,
 against the rotation
3. Collect shuttle, extract
 energy from velocity

Extracted energy $> m_{\text{waste}} c^2$

Picture: Misner, Thorne and Wheeler 1973
1. Einstein gravity Penrose process

Rotating black hole

Splitting version Penrose and Floyd 1971

1. Drop in shuttle
 + payload (waste)
2. Eject payload in ergoregion, against the rotation
3. Collect shuttle, extract energy from velocity

Extracted energy $> m_{\text{waste}} c^2$

- Energy budget drawn at infinity
- Comes from rotational energy
 \rightarrow Laws of BH mechanics...

Picture: Misner, Thorne and Wheeler 1973
1. **Einstein gravity Penrose process**

Rotating black hole

Splitting version Penrose and Floyd 1971

1. Drop in shuttle
 + payload (waste)
2. Eject payload in ergoregion, *against* the rotation
3. Collect shuttle, extract energy from velocity

Extracted energy \(> m_{\text{waste}} c^2 \)

- Energy budget drawn at infinity
- Comes from rotational energy
 - Laws of BH mechanics...
- Exists for \(\frac{|J|}{M^2} > 2/(\sqrt{2} + 1) \)

 Fayos Valles and Llanta Salleras 1991
 (and only for?)

- Collision version more efficient

 Wald 1974,...
Einstein gravity Penrose process (cont’d)

Tether version Penrose 1969

1. Lower payload (waste) to ergoregion by a tether
2. Extract energy from pull on the tether

Extracted energy $> m_{\text{waste}}c^2$

Picture: Penrose 1969
Einstein gravity Penrose process (cont’d)

Tether version Penrose 1969

1. Lower payload (waste) to ergoregion by a tether
2. Extract energy from pull on the tether

Extracted energy $> m_{\text{waste}} c^2$

- Tether’s net contribution to energy budget assumed negligible
- → Ongoing debate... Marolf and Sorkin 2002
 A. R. Brown 2013

Today: no tethers!
2. Covariant Lorentz violation: Einstein-æther

Fundamental Jacobson and Mattingly 2001,… or effective Hořava 2009,…

Dynamical fields:

- $g^{(A)}_{ab}$ ($-++++$)
- u^a with $u_a u^a = -1$ (æther)

\Rightarrow Distinguished timelike direction at each point
2. Covariant Lorentz violation: Einstein-æther

Fundamental Jacobson and Mattingly 2001, … or effective Hořava 2009, …

Dynamical fields:
- $g_{ab}^{(A)} (−+++)$
- u^a with $u_a u^a = −1$ (æther)
 \Rightarrow Distinguished timelike direction at each point

Build second metric:

$$g_{ab}^{(B)} = −u_a u_b + c^{-2} (g_{ab}^{(A)} + u_a u_b) (−+++), \text{ but faster!}$$

$c > 1$
2. Covariant Lorentz violation: Einstein-Æther

Fundamental Jacobson and Mattingly 2001… or effective Hořava 2009,…

Dynamical fields:

- \(g^{(A)}_{ab} \) \((-++++)\)
- \(u^a \) with \(u_a u^a = -1 \) (Æther)
 \(\Rightarrow \) Distinguished timelike direction at each point

Build second metric:

\[
g^{(B)}_{ab} = -u_a u_b + c^{-2} \left(g^{(A)}_{ab} + u_a u_b \right) \quad \text{\((-++++)\) but faster!} \]

\(c > 1 \)

Excitations:

A-fields: hyperbolic in \(g^{(A)}_{ab} \)

B-fields: hyperbolic in \(g^{(B)}_{ab} \)

Local interactions
2. Covariant Lorentz violation: Einstein-æther

Fundamental Jacobson and Mattingly 2001, ... or effective Hořava 2009, ...

Dynamical fields:

- $g_{ab}^{(A)} (++++)$
- u^a with $u_a u^a = -1$ (æther)
 \[\Rightarrow \text{Distinguished timelike direction at each point} \]

Build second metric:

\[g_{ab}^{(B)} = -u_a u_b + c^{-2} (g_{ab}^{(A)} + u_a u_b) (++++) \quad \text{but faster!} \]

\[c > 1 \]

Excitations:

- particles: geodesic
- A-fields: \underline{hyperbolic in} $g_{ab}^{(A)}$
- particles: geodesic
- B-fields: \underline{hyperbolic in} $g_{ab}^{(B)}$

Local interactions

→ **Collisions** conserving 4-momentum
2. Covariant Lorentz violation: Einstein-æther

Fundamental Jacobson and Mattingly 2001, . . . or effective Hořava 2009, . . .

Dynamical fields:

- $g^{(A)}_{ab} (−++++)$
- u^a with $u_a u^a = −1$ (æther)
 $⇒$ Distinguished timelike direction at each point

Build second metric:

$$g^{(B)}_{ab} = −u_a u_b + c^{-2} (g^{(A)}_{ab} + u_a u_b) (−++++) \quad \text{but faster!}$$

$c > 1$

Excitations:

- particles: geodesic
- A-fields: hyperbolic in $g^{(A)}_{ab}$
- particles: geodesic
- B-fields: hyperbolic in $g^{(B)}_{ab}$

Local interactions

$⇒$ **Collisions** conserving 4-momentum (1-form)
3. Lorentz-violating black hole

$g^{(A)}_{ab}$:
- static, spherically symmetric, asymptotically flat
- χ^a Killing, asymptotically Minkowski ∂_t at infinity
- future A-horizon: $\chi_a \chi^a$ changes sign
3. Lorentz-violating black hole

\(g^{(A)}_{ab} \):
- static, spherically symmetric, asymptotically flat
- \(\chi^a \) Killing, asymptotically Minkowski \(\partial_t \) at infinity
- future \(A \)-horizon: \(\chi_a \chi^a \) changes sign

\(u^a \):
- stationary, spherically symmetric, asymptotically \(\partial_t \) at infinity
- regular on \(A \)-horizon

\(\Rightarrow A \)-horizon not an event horizon in \(g^{(B)}_{ab} \)
3. Lorentz-violating black hole

$g^{(A)}_{ab}$:
- static, spherically symmetric, asymptotically flat
- χ^a Killing, asymptotically Minkowski ∂_t at infinity
- future A-horizon: $\chi_a \chi^a$ changes sign

u^a:
- stationary, spherically symmetric, asymptotically ∂_t at infinity
- regular on A-horizon

\Rightarrow A-horizon not an event horizon in $g^{(B)}_{ab}$
Penrose process

cf Eling et al 2007

Radial motion (by assumption)

- Σ (A or B) dropped from infinity
- $\Sigma \rightarrow A + B$ split in ergoregion
- B-ejectum escapes to infinity

g_{ab}

I^+

I^-

I^0
Penrose process

cf Eling et al 2007

Radial motion (by assumption)

• $\Sigma \ (A \text{ or } B)$ dropped from infinity
• $\Sigma \rightarrow A + B$ split in ergoregion
• B-ejectum escapes to infinity

Killing energy at infinity?

Iff $-k^A_a \chi^a < 0$, Killing energy at infinity increases
Penrose process

cf Eling et al 2007

Radial motion (by assumption)

• Σ (A or B) dropped from infinity
• $\Sigma \to A + B$ split in ergoregion
• B-ejectum escapes to infinity

Killing energy at infinity?

Iff $- k^A_a \chi^a < 0$, Killing energy at infinity increases

\Rightarrow End point of energy extraction?
Penrose process

Radial motion (by assumption)

- $\Sigma (A$ or $B)$ dropped from infinity
- $\Sigma \rightarrow A + B$ split in ergoregion
- B-ejectum escapes to infinity

Killing energy at infinity?

Iff $-k^A_a \chi^a < 0$, Killing energy at infinity increases

⇒ End point of energy extraction?
⇒ Perpetual motion?
⇒ Violation of 2nd law of BH thermodynamics?!?

Penrose process

Radial motion (by assumption)

- Σ (A or B) dropped from infinity
- $\Sigma \rightarrow A + B$ split in ergoregion
- B-ejectum escapes to infinity

Killing energy at infinity?

Iff $-k^A_a \chi^a < 0$, Killing energy at infinity increases

⇒ End point of energy extraction?
⇒ Perpetual motion?
⇒ Violation of 2nd law of BH thermodynamics?!?

For which $(g_{ab}^{(A)}, u^a)$ does the process exist?
4. Results

1. Energy extraction admission theorem

For any \(g^{(A)}_{ab} \), the process exists for some \(u^a \).
4. Results

1. Energy extraction admission theorem

For any $g^{(A)}_{ab}$, the process exists for some u^a

Construction:

- Σ: massive A
- B-ejectum massless

- At splitting event, make u^a point to the left of v^a by sufficiently large relative A-velocity ($> c^{-1}$)

 cf Eling et al. 2007
4. Results

1. Energy extraction admission theorem

For any $g_{ab}^{(A)}$, the process exists for some u^a

Construction:

- Σ: massive A
- B-ejectum massless

- At splitting event, make u^a point to the left of v^a by sufficiently large relative A-velocity ($> c^{-1}$) cf Eling et al 2007

Does this happen for ‘reasonable’ field equations?
4. Results (cont’d)

2. Energy extraction no-go theorem

If

\[-g_{ab}^{(B)} \chi^a \chi^b < 1\] (1)

in exterior \(\cup\) ergosurface \(\cup\) ergoregion, the process does not exist.
4. Results (cont’d)

2. Energy extraction no-go theorem

If

\[- g_{ab} B^a B^b < 1 \quad (1)\]

in exterior \(\cup \) ergosurface \(\cup \) ergoregion, the process does not exist.

Comments

• Physics of (1): \(- g^{(B)}_{00} < 1 \Rightarrow B\)-gravity attractive

• (1) implies \(- g^{(A)}_{ab} \chi^a \chi^b < 1 \Rightarrow A\)-gravity attractive too

• (1) holds in all known Einstein-æther and Hořava solutions, analytic and numerical

• Might (1) necessarily follow from (reasonable) field equations?
4. Results (cont’d)

2. Energy extraction no-go theorem

If

\[- g^{(B)}_{ab} \chi^a \chi^b < 1 \quad (1)\]

in exterior \(\cup \) ergosurface \(\cup \) ergoregion, the process does not exist.

Comments

• Physics of (1): \(- g^{(B)}_{00} < 1 \Rightarrow B\)-gravity attractive
• (1) implies \(- g^{(A)}_{ab} \chi^a \chi^b < 1 \Rightarrow A\)-gravity attractive too
• (1) holds in all known Einstein-æther and Hořava solutions, analytic and numerical
• Might (1) necessarily follow from (reasonable) field equations?

Proof: conceptually straightforward
5. Upshots

No-go theorem for Penrose splitting processes in spherically symmetric black holes without local Lorentz symmetry

- **Strong** despite the limitations (e.g. radial motion)
 - no perpetual motion
 - no violation of 2nd law of thermodynamics

Nonradial motion generalisation:

- Exists under additional assumptions about the area-radius

 Paul Ezra, JL and William Smith (in preparation)

Conjecture:

- If field equations allow $-g^{(B)}_{ab} \chi^a \chi^b < 1$ to be violated and energy extraction to occur, there must be new charges at infinity
Happy birthday Jurek!