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Determining mass distribution in the spacetime = one of the fundamental problems of astronomy

Most methods known use gravity

Two possibilities

1. Use the motions of test bodies in the gravitational field

2. Use the impact of gravity on light propagation - gravitational light bending, lensing,
Shapiro delays...

Idea: new, very direct method of measuring the amount of matter along the line of sight using 2.

Based on simultaneous measurement of the parallax and: either the apparent size of an object
(standard ruler) or the apparent luminosity of that object (standard candle)

Possible application: dark and ordinary matter mapping, cosmological isotropy tests, ...
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* Matter present along the line of sight = gravitational light bending. Both distance measurements
affected, but affected differently!

y a’ S A—— Dpar > Dang

* Objects appear further away when the distance is measured by parallax than by the angular size!

o Claim: the difference measures the amount of matter along the LOS between J’and (@
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What about light bending by matter off the line of sight?

What about the motions of the source and the observer and the special relativistic effects (time
dilation, stellar aberration...)?

Directional dependence of the effect: need to consider 2D angles and displacements

Need of a fully relativistic approach! (all GR and SR effects)
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Fully relativistic approach

M. Grasso, MK, J. Serbenta, Geometric optics in general relativity using bilocal operators,
Phys. Rev. D 99, 064038 (2019) (Editors’ suggestion)

Spacetime with any Lorentzian metric auditorium
No
Two distant, small regions of spacetime, connected by a null \
geodesic ] ©
Observers measure the TOA, position on the sky, drifts ...
Two types of effects: N
Vv
e GR light propagation effects: 1st order GDE 0 L
(linearisation in the transverse coordinates) N, \
* SR effects (aberration, time dilation, L < R,

Doppler...) given an emitter and observer

Separate the dependence in the expressions
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l 8 Bilocal geodesic operators (bitensors)
(Synge 1960, DeWitt&Brehme 1960, Dixon 1970, Vines 2015,
\ \ Flanagan et al 2018, Fleury 2014, Uzun 2018...)
Nonlinear functionals of the curvature tensor
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/\ Flat light cones approximation (FLA)

geodesic deviation equation
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Flat light cones approximation

2 — U
6)6@[@” = x%l%,u

No transverse Romer delays

Parallel rays approximation

A
orf = Alo
lg M@O_

No perspective distortions

| components drop out,
only the timelike and transverse remain

Applicability

2
almost flat: keep £ disregard <_>
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Displacement formulas

QZAB Alg = 5x§ — 5)?% — mAﬂ 5xg

5xg l@/l = 5)6((_’; l%//t

e
where

N = parallel transport

D Py — Pe Jacobi operator
bAB o RA,LLVC'
DA (No) =0
DA (No) = 615

le+ Alg
M1 DY, =0

m: Qs > Pe E/O asymmetry operator

mA, — R4, 11" mC, = RA,, 1M1
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A
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vanishes in a flat space!
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Parallax in a general situation

Both observer and emitter in bound systems

Barycenters in free fall

Question: parallax without the aberration effects

barycenter drift parallax
(linear) (periodic)



Motions-independent observables

— B H
z = 2(ug, ug)

l’/“lEI"'u(u'u) Up
O
A — A H U
MB_MB<Rmﬂ u
70
A =14 H H

X5‘

13



Motions-independent observables

0" &
L Uk,
r* = ri(uk)
)
A — A H H
MB_MB<Rmﬁ ul
Yo
A =14 H H

Xgl

13



Motions-independent observables

0" &
L Uk,
r* = ri(uk)
)
A — A H H
MB_MB<Rmﬁ ul
Yo
A =14 H H

— u u
DPC”’ - Dpa” <R vaf | ’ u@ A
70 Xe
S14 = 8.4 (R” ‘ u, ut w”) A
0) O ’ ’ > A — -1 C
s, Yo @ %o wiA =M T,

13



Motions-independent observables

— H K
7= Z(u@,o u%)

H = pH (" Uo
' =r (u@)
A — A H H
My =M B<R vaf J/O,u@
A =14 H H
I, =117, <R vaf yo,u@)
— 7 T
Dang = Dang <R l/aﬂ ° u@> 1 A
Y0 MAB — D 1 B
Mg Z@G
— 7 p
Dpar — Dpar <R vaf 7’0, u@) 1 X
A E
HA — 9—1 <5C +m C )
B M%l@o. ¢ B LB
A — A Iz B oM
Opl" = Opr (R vaf yo,u@, U w@> WA = M_lAC e,
ﬁ = ﬁ R* ul, ut, wt, wk
dT@ dT@ vaf Yo O & O E

13



Motions-independent observables

0" &
L Uk,
r* = ri(uk)
)
A — A H H
MB_MB<Rmﬁ ul
Yo
A =14 H H

— u u
DPC”’ - Dpa” <R vaf | ’ u@ A
70 Xe
S14 = 8.4 (R” ‘ u, ut w”) A
0) O ’ ’ > A — -1 C
s, Yo @ %o wiA =M T,

13



Motions-independent observables

0”&
7
l"/“lEI"'u(ug) Ug
A — A H H
MB_MB<Rmﬁy,u@>
A =14 H H
HB_HB<R vaf yo,u@)

par par © ‘
70 Xe
St = 8,04 (R” ul, u w”) A
0 0 s Upgs Ueps A _ -l C
vaf Yo (A ) W e = M~ 11 B
dz dz (
—=— (R Ul ul, wh, we A =, A [ pr _ $A A
dtg  drg vaply, TOTRETTOTSE Witp=Wip Ruaﬁyo =t

13



Parameter [

det I14,
det M4,

14

Up
o
W
@,
il
Uge
I o
We
X0
E
A
XE




Parameter [

det I14,

=1—detw,4_=1-—
4 T B det M4,

e scalar, dimensionless

14

I o
We

Xo

XéE



Parameter [

det I14,
det M4,

e scalar, dimensionless

e momentary motions-independent

14

I o
We

Xo

XéE



Parameter [

det IT*
p=1—detw A =1- B
B det M4,

e scalar, dimensionless
e momentary motions-independent

e (theoretically) simple to measure

D2

ang

p=1%—
par

14




Parameter [

det I14,
det M4,

e scalar, dimensionless

e momentary motions-independent

e (theoretically) simple to measure

D2

ang

/’l:1+ > ulé
par

I o
We

Xo

XE
14



Parameter [

det I14,
det M4,

e scalar, dimensionless
e momentary motions-independent

e (theoretically) simple to measure

D2

ang

2
par

p=1%

I o
We

Xo

XE
14



Parameter [

| detw A =1 det I14,
=1l—-detw 4, =1 —-———"—
4 T B det M4,
e scalar, dimensionless

e momentary motions-independent

e (theoretically) simple to measure

D2

ang

2
par

p=1%

* no need to measure the parallel transport independently
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spacetime geometry /(%) F”aﬂ(x) g,, = [flat] + [curvature corrections] <R”m 5 ‘%) +h.o.t.
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Useful?

Very small effects (unless for cosmological distances) (E. Villa, MK)

On the galactic scale (D =30 kpc, p =102 Mo pc3-1 Mo pcd) u=106-104
3
On cosmological scales (MK, E. Villa): H=7Cm, 22+ 0(z%)

uz=1)=022 (ACDM Q, =069, Qm =031, Qg =0)
Requires simultaneous measurement of parallax as well as Dang to an object
Either a standard ruler or a standard candle

Dang = Dlum(l + Z)_z

Requires many sources to increase the S/N

Measurements of the annual parallax on cosmological scales impossible today

...but we may use the motion of the LC wrt CMB frame in the future [Kardashev 1986,
Rasanen 2014, Quercellini et al 2012, Marcori et al 2018], effects borderline visible
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Still:
Conceptually simple

The only observable so insensitive to external gravitational perturbations
and peculiar motions (meaning: no systematics due to tidal distortions or peculiar motions!)

Tomography-like measurement

Similar ideas before:

McCrea 1935 - parallax distance in FLRW metric carries additional information
Weinberg 1970 - parallax distance in FLRW metric determines k = 0,1,-1
Kasai 1988, Rosquist 1988 - parallax distance in FLRW (+ perturbations)

Rasanen 2014 - parallax distance vs. luminosity distance as consistency test of FLRW
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New method of curvature determination/weighing matter along the line of sight

Based on gravitational light bending

Uses only astrometry: compare Dp.r With Dane (Or Dium @and z) measured to a single
object

Measurement difficult: small effect, parallax determination difficult on long distances
Yet: measurement insensitive to the momentary motions or gravitational distortions!

Tomography-like, sensitive to dark and baryonic matter along the line of sight

Thank you!
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Cosmological applications of u (with E. Villa)

Tests of spacetime isotropy
Local matter density mapping (dark + baryonic)

Determination of cosmological parameters

Parallax and drifts in the Schwarzschild (and Kerr?) spacetime: observations of
free-falling objects in those spacetimes (J. Serbenta)

Numerical applications: ray-tracing and ¥’ in numerical spacetimes (M. Grasso)

Redshift-based observables, generalised reciprocity relations

Thank you!
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Quotient spaces

FLA & PRA - components proportional to
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(5xg + Dlg) l@ﬂ = 6Xg l@,u

Components along /» = gauge
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Quotient spaces

FLA & PRA - components proportional to
[1 drop out

ori(Al; + Cly) = 5r(Aly)

(5xg + Dlg) l@ﬂ = 6xg l@ﬂ

Components along /» = gauge

@@ —_ T@M/l@
Forgetting the /1 component (gauge) [Alg] € P
[0%0] € Go dim P, = 2

Helps also with observer invariance of the formalism:

P o inherits a positive-definite metric from g

Distances and angles measured by any observer on his or her screen space (Sachs shadow theorem)

Mappings between the quotient spaces have an observer-invariant geometric meaning
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Light propagation effects

) :L’ég A (S.X(C)

Ko M 7 vV S0 /
AL = 618 +TH, (O)1” 525 I+ Alo| /

[+ Adlgo—%
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Light propagation effects

0xh A (S.X(C)

Ko SiH L vV .0
Al = 811 +T*, (O) 1Y 625 I+ Adlo

Can be combined into a single
\ object
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Light propagation effects

M
ox O

Ho_ sTH 7 V S,
Al = 0l + T, (0) 1" 02 Z+Al(9

Can be combined into a single
\ object

) r’; [ Wxx H o Wxph? (5;:17%
Alg, Wrxv p Wrr yg Alp s

N _—_

w

Symplectic: whaow =0

[+ Alglo—0

Given by ODE:

\ \ W) = 1
d B 0 g,ucr
oV = ( Rum{'ﬂp [ Id 0 ) W
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Displacement formulas
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Displacement formulas

D([Als]) = [0xe — 6X 5] — m([0x4])

8 ([5X@], l@) = g([oxg], lg)

e

Two parametrizations of displaced geodesics:

endpoint positions [0xp]  [0xg]

initial data [0x5] [Alg] g+ Alg
Dimensions:
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time lapse condition -1
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Displacement formulas

D([Als]) = [0xe — 6X 5] — m([0x4])

8 ([5X@], l@) = g([oxg], lg)

Two parametrizations of displaced geodesics:

endpoint positions [0xp]  [0xg]

initial data [0x5] [Alg]
Dimensions:
[5.?6@] < @@ =3 [5.?6@] < @@ = 3

time lapse condition -1

20

le+ Alg

\

total dimension =5
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Position drift (proper motion)

9([5130]» l) — g([5:135], l)

D ([Alp]) = [dze — 020] — m ([0z0])

Al A 1 B
O _p-I Ue — U —mB
d7o B ((1 T2 ¢ © po0o

Sor 24 ! D! A ! ¥y 7 B H Xe
or’ = w; us —uo | —m-, u
O ug, B 1+ z w0

An exact formula for the position drift rate in any curved space

Data: curvature along the line of sight + kinematical variables

Interesting physical consequences...
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B
1 A 1
A_ A 1 _» _ B s
Opl _W@_l_l@ ug@ B(<1+ZM% u@> mﬂu@>
o

e Relation between lensing and position drift

strong magnification = faster position drift rates

e Close to a caustic

DA becomes degenerate

MAg diverges (infinite magnification) Xe

ITAg diverges (infinite parallax)

oorA diverges (infinite drift rate)

caustics = position drift and parallax magnifiers
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Observables

spacetime geometry &%) Fﬂaﬂ(x) g, = [flat] + [curvature corrections] <Rﬂmﬁ‘ ) +h.o.t.
I

observation and emission points
along a null geodesic 7;(4). 0, &

4

curvature along the line

of sight Rﬂmﬂ

70

(null) geodesic deviation equation

bilocal geodesic operators
Wyx: Wy, Wi, Wix, 2. m

momentary positions and motions of
covariant expressions for / the observer and emitter 5xg, 5x§, ub ut wt wt

08 0 EF
observables

A
observables ., 2,04", 042, - ..
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Relation to the Sachs formalism

nonlinear, 1st order ODE’s for them

Sachs 1961, Ehlers, Jordan, Sachs 1961 - formalism based .
on congruences of null geodesics
congruence = 1 geodesic through each point =
3-parameter family
local tensorial quantities 8, 645, W45
equivalent to the BGO formalism ¢

avoids bitensors, BUT...

less flexible (need to fix the initial condition for the congruence, cannot change later)

cannot simultaneously displace both endpoints of geodesics

less useful to study drifts and parallax (although Rasanen 2014, Rosquist 1988...)
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Light propagation in the geometric optics approximation ¢

Observables:

rH
e time of arrival To(Tg)
lo
e position the sky ' =-——+ug T
o Uo Ao
O

e image distortion 94 ~ 514

e parallax 604 ~ 6r4 spacetime

* position drift v

or Oy = Spyr?

e redshift

Fermi-Walker derivative

* redshift drift

Spw X' =V, X'+ (—w@yug + u@ng> X
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”Naive” approach

Redshift and position drift

* Gravitational interactions between bodies
* (Time-dependent) light ray bending
e (Time-dependent) ISW effect for z

* (Time-dependent) Shapiro
and geometric delays

* (Time-dependent) motions of E and O

* (Time-dependent) aberration effects

)
e (Time-dependent) gravitational redshift
)

* (Time-dependent) Doppler effect

Very complicated problem!
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”Naive” approach

spacetime geometry 8,,(%), F”a ﬂ(x)

‘ geodesic equation

null geodesics *"(4)

v
O’s and E’s worldlines 7,(70)- 7(7%) ]
//
nearby null 4
X0

geodesics time of observation 7o

v

A
observables .z, 057", 042, - .. }
X&

Everything depends on g in a complicated way \/

No general formulas or relations
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Geometric approach

Normal coordinates around a point

Fermi normal coordinates around a geodesic (4, ')

g,uy = 7]/41/ + C(/’la V) | R,uiz/j(ﬁ)yiyj + 0(y3) \

Geodesics nearby given by the GDE

V\ViE—RE (DI =0

T

impact of curved geometry

Synge 1960, Bazanski 1977, Alexandrov&Piragas 1979
Vines 2015, Puetzfeld&Obukhov 2016, Uzun 2018 ...
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Geometric approach

Redshift and position drift

XE

Impact of the spacetime geometry
only via curvature along the line of sight
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