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Dynamics in Loop Quantum Gravity

Start with classical general relativity Ashtekar-Barbero variables 
In canonical approach: Apply canonical quantization

End up with a quantum version of Einstein’s classical 
equations: Quantum Einstein Equations
We can use either Dirac or reduced quantization 

In both approaches quantum dynamics crucially 
depends on choices on makes in step of quantization

Different models exists for dynamics: Physical properties?
Associated Spin foam models [Kieselowksi, Lewandowski ‚19]



Reduced Quantization: LQG
Three tasks to perform:

1.) Derive physical phase space: 
Construct Dirac observables for GR

2.) Derive gauge invariant version of Einstein‘s equations on 
physical phase space: Determine physical Hamiltonian

3.) Quantize reduced system:
Quantum Einstein Equations on HPhys



Relational Formalism: Observables
Start with constrained theory

Choose for each constraint a so called reference fields (clock)

Dirac observables:

Then given phase space function f, associated observable is:

Algebra of observables:

[Rovelli, Dittrich]

Gauge invariant dynamics 
on reduced phase space:

Matter clocks
Choose clocks 
from matter dof
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Which Reference Matter?
 Introduce additional scalar fields coupled to gravity

Idea: Solve  C for momentum P:

Distinguish between 2 classes of models:

Type I and type II models [K.G., T. Thiemann `12]

Alternatively one can choose geometrical dof as reference 
field: 'geometrical clocks’ —> quantization more complicated

Geometrical clocks have been considered in the context of 
linear cosmological perturbation theory 
[K.G., Herzog`17, K.G., Herzog, Singh ’18, K.G., Singh, Winnekens ’19]



 
 

 

 

Reference Matter: 
Lagrangian can obtain up to 8 scalar fields:

Idea: Solve  C for momentum P:

Particular models considered so far:

matter can be interpreted as dust, has same 

(TI , �,Wj)

Vµ := WjrµT
jwith �(⇤),⇥(⇤),�(⇤) arbitrary functions of ⇢

[Brown, Kuchar `95]

[Brown, Kuchar `95]

[Bicak, Kuchar `97]

[Kuchar, Torre `91]

LTD : � = ⇥ = � = ⇤

LND : � = 1,⇥ = � = ⇤ = 0

LNRD : � = ⇥ = 0,� = ⇤

LGD : � = 0,⇥ = 1,� = ⇤

Tµ⌫
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p
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Canonical Analysis of Type I & II
We distinguish between cases:

Idea: Solve  C for momentum P:

(I)

are determined by solving 2nd class constraints strongly
In both cases one obtains system with 2nd class constraints

or↵(⇢) 6= 0 �(⇢) 6= 0 (II) ↵(⇢) = �(⇢) = 0

�,Wj

We end up with:
(I) (A,E), (T0, P0), (Tj , Pj) 4 additional dof
(II) (A,E), (T0, P0) 1 additional dof
Particular cases:
(I) LTD : h0(A,E, T0) h0(A,E)

all other models h0(A,E, T0)

⇢ 6= 0

�aT0

(II) h0(A,E, T0) depends only on qab�aT0�bT0 h0(A,E)
depends on 

BK-M



Example: Type II
Lagrangian obtains 1 scalar field:

Idea: Solve  C for momentum P:

Particular models considered so far:
[Rovelli, Smolin `93] [Kuchar, Romano`95]

T0

LS =
p

|g|L(I), I := �1

2
gµ�(⇥µT0)(⇥�T0)

Klein-Gordon field:
General case: [Thiemann `06]

In both cases constraints are of the form:

LS =
p
|g|L(I), I := �1

2
gµ⌫(rµT0)(r⌫T0)

eC0 = P0 + h0(A,E) = 0 eCa = P0T0,a + Cgeo
a (A,E)



Summary: Reference Matter
Type I models:

Idea: Solve  C for momentum P:

(i) Reduction wrt to Diffeo and Hamilton in classical theory

Type II models:

Reduction wrt Hamilton in classical theory, Diffeo via Dirac 
quantization in quantum theory

Difference relevant once quantization is considered



Beautiful Beaches 
KITP Workshop Santa Barbara:

Idea: Solve  C for momentum P:

Fishbowl @ KITP: Beach next to KITP:

Kristina Giesel 




Reduced Dynamics
We have derived (partially) reduced phase space of GR

Idea: Solve  C for momentum P:

can be interpreted as physical time parameter

Aim: Gauge invariant version of Einstein‘s eqn:

Question: How does look like for different models?

OA,T I (⌧,�k), OE,T I (⌧,�k) (OA,T0(⌧), OE,T0(⌧))

d

d⌧
OA,T I (⌧,�k) = {OA,T I (⌧,�k), Hphys}

d

d⌧
OE,T I (⌧,�k) = {OE,T I (⌧,�k), Hhys}



Reduced Dynamics
One can show that for all considered models:

Idea: Solve  C for momentum P:

Particular Models:

Type I: (i)
Type I: (ii)
Type II: 
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Reduced Quantization: LQG
What kind of current models exist for LQG?

Type II models: Partial reduction, only reference field 
associated with Hamiltonian constraint
Examples: 
1 KG scalar field
1 Gaussian dust field
               

Type I models: 4 scalar fields 

Examples: 
Brown-Kuchar dust model 
Gaussian dust model
4 KG scalar field 

[K.G., T. Thiemann `12]

[K.G., T. Thiemann `12]

[K.G., T. Thiemann `07]

[Husein, Pawlowski `11]

[Domagala, K.G., Kaminski, Lewandowski `10]

[K.G., Vetter `16, K.G., Vetter ’19]



Two scalar field Models
In this talk we focus on two particular models

Idea: Solve  C for momentum P:

Type II: One massless Klein-Gordon scalar field 

Allows comparison of different models and in particular allows 
first steps of comparison between Dirac and reduced 
quantization
Both can be seen as generalizations of the APS model to full 
LQG  [Ashtekar, Pawlowski, Singh 2006]

Refer to as 'Warsaw model’, Dirac quantization

Type I: Four massless Klein-Gordon scalar fields

Refer to as '4 scalar fields model’, Reduced Quantization



Warsaw Model: Reference Matter
Idea: Use one scalar field to reduce wrt Hamiltonian constraint

Idea: Solve  C for momentum P:

Diffeos are solved at the quantum level, Quantum Dirac observables 
Reference field is one massless scalar field

[Ashtekar, Pawlowski, Singh 2006]
In order to formulate the model we need:

diffeomorphism invariant Hilbert space
geometric operators on           to construct quantum 
Dirac observables 

on (a suitable domain of) 
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The birth of Time: Quantum Loops describe the evolution 
of the universe

and quantum effects need to merge under conditions close to the Big Bang.

Traditional cosmological models describe the evolution of the Universe within the framework
of the general theory of relativity itself. The equations at the core of the theory suggest that
the Universe is a dynamic, constantly expanding creation. When theorists attempt to discover
what the Universe was like in times gone by, they reach the stage where density and
temperature in the model become infinite – in other words, they lose their physical sense.
Thus, the infinities may only be indicative of the weaknesses of the former theory and the
moment of the Big Bang does not have to signify the birth of the Universe.

In order to gain at least some knowledge of quantum gravity, scientists construct simplified
quantum models, known as quantum cosmological models, in which space-time and matter
are expressed in a single value or a few values alone. For example, the model developed by
Ashtekar, Bojowald, Lewandowski, Pawłowski and Singh predicts that quantum gravity
prevents the increase of matter energy density from exceeding a certain critical value (of the
order of the Planck density). Consequently, there must have been a contracting universe
prior to the Big Bang. When matter density had reached the critical value, there followed a
rapid expansion – the Big Bang, known as the Big Bounce. However, the model is a highly
simplified toy model.

The real answer to the mystery of the Big Bang lies in a unified quantum theory of matter and
gravity. One attempt at developing such a theory is loop quantum gravity (LQG). The theory
holds that space is weaved from one-dimensional threads. ”It is just like in the case of a
fabric – although it is seemingly smooth from a distance, it becomes evident at close quarters
that it consists of a network of fibres,” describes Wojciech Kamiński, MSc from FUW. Such
space would constitute a fine fabric – an area of a square centimetre would consists of 1066

threads.

Physicists Marcin Domagała, Wojciech Kamiński and Jerzy Lewandowski, together with
Kristina Giesel from the University of Louisiana (guest), developed their model within the
framework of loop quantum gravity. The starting points for the model are two fields, one of
which is a gravitational field. ”Thanks to the general theory of relativity we know that gravity is
the very geometry of space-time. We may, therefore, say that our point of departure is three-
dimensional space,” explains Marcin Domagała, PhD (FUW).

The second starting point is a scalar field – a mathematical object in which a particular value
is attributed to every point in space. In the proposed model, scalar fields are interpreted as
the simplest form of matter. Scalar fields have been known in physics for years, they are
applied, among others, to describe temperature and pressure distribution in space. ”We have
opted for a scalar field as it is the typical feature of contemporary cosmological models and
our aim is to develop a model that would constitute another step forward in quantum gravity
research,” observes Prof. Lewandowski.

In the model developed by physicists from Warsaw, time emerges as the relation between
the gravitational field (space) and the scalar field – a moment in time is given by the value of

Prof. Jerzy Lewandowski standing by The Kitchen, 1948 by Picasso at the Museum of
Modern Art in Manhattan. The lines in the painting are fairly similar to graphs showing the
evolution of quantum states of the gravitational field in loop quantum gravity. (Credit:
Elżbieta Perlińska-Lewandowska)

Faculty of Physics University of Warsaw > Press releases > Press release

The birth of time: Quantum loops describe the evolution of the Universe

2010-12-16

Physicists from the Faculty of Physics, University of Warsaw have put forward – on the pages
of Physical Review D – a new theoretical model of quantum gravity describing the
emergence of space-time from the structures of quantum theory. It is not only one of the few
models describing the full general theory of relativity advanced by Einstein, but it is also
completely mathematically consistent. ”The solutions applied allow to trace the evolution of
the Universe in a more physically acceptable manner than in the case of previous
cosmological models,” explains Prof. Jerzy Lewandowski from the Faculty of Physics,
University of Warsaw (FUW).

While the general theory of relativity is applied to describe the Universe on a cosmological
scale, quantum mechanics is applied to describe reality on an atomic scale. Both theories
were developed in the early 20th century. Their validity has since been confirmed by highly
sophisticated experiments and observations. The problem lies in the fact that the theories are
mutually exclusive.

According to the general theory of relativity, reality is always uniquely determined  (as in
classical mechanics). However, time and space play an active role in the events and are
themselves subject to Einstein's equations. According to quantum physics, on the other
hand, one may only gain a rough understanding of nature. A prediction can only be made
with a probability; its precision being limited by inherent properties. But the laws of the
prevailing quantum theories do not apply to time and space. Such contradictions are
irrelevant under standard conditions – galaxies are not subject to quantum phenomena and
quantum gravity plays a minor role in the world of atoms and particles. Nonetheless, gravity

the scalar field. ”We pose the question about the shape of space at a given value of the
scalar field and Einstein's quantum equations provide the answer,” explains Prof.
Lewandowski. Thus, the phenomenon of the passage of time emerges as the property of the
state of the gravitational and scalar fields and the appearance of such a state corresponds to
the birth of the well-known space-time. ”It is worthy of note that time is nonexistent at the
beginning of the model. Nothing happens. Action and dynamics appear as the interrelation
between the fields when we begin to pose questions about how one object relates to
another,” explains Prof. Lewandowski.

Physicist from FUW have made it possible to provide a more accurate description of the
evolution of the Universe. Whereas models based on the general theory of relativity are
simplified and assume the gravitational field at every point of the Universe to be identical or
subject to minor changes, the gravitational field in the proposed model may differ at different
points in space.

The proposed theoretical construction is the first such highly advanced model characterized
by internal mathematical consistency. It comes as the natural continuation of research into
quantization of gravity, where each new theory is derived from classical theories. To that end,
physicists apply certain algorithms, known as quantizations. ”Unfortunately for physicists, the
algorithms are far from precise. For example, it may follow from an algorithm that a Hilbert
space needs to be constructed, but no details are provided,” explains Marcin Domagała,
MSc. ”We have succeeded in performing a full quantization and obtained one of the possible
models.”

There is still a long way to go, according to Prof. Lewandowski: ”We have developed a
certain theoretical machinery. We may begin to ply it with questions and it will provide the
answers.” Theorists from FUW intend, among others, to inquire whether the Big Bounce
actually occurs in their model. ”In the future, we will try to include in the model further fields of
the Standard Model of elementary particles. We are curious ourselves to find out what will
happen,” says Prof. Lewandowski.

The scientific paper ”Gravity quantized” published in Physical Review D is the crowning
achievement of research conducted at the Faculty of Physics, University of Warsaw within
the framework of the MISTRZ Programme by the Foundation for Polish Science. One of the
objectives of the programme is to award grants to professors who successfully combine
scientific research with training young academic staff.
Full bibliographic information
“Gravity quantized: Loop quantum gravity with a scalar field”; Marcin Domagała, Kristina
Giesel, Wojciech Kamiński, Jerzy Lewandowski; Phys. Rev. D 82, 104038 (2010);
arXiv:1009.2445



 

'But we do not have quantum gravity', a phrase that is 
often used….

fraze:  Meaning of:
a small milling cutter used to cut down the ends of canes or rods to 
receive a ferrule



Warsaw Model: Observables
Starting point:           already at the SU(2) gauge invariant and 
spatially diffeomorphism invariant level

Idea: Solve  C for momentum P:

           can be obtained using group averaging techniques
Quantum Dirac observables necessary for Hamiltonian 
constraint 

is already SU(2) gauge and spatially diff-invariant
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Warsaw Model: Dynamics 
Classical physical Hamiltonian, sector 

Idea: Solve  C for momentum P:

           needs to be implemented on         , suitable operator ordering 
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[Properties of phys. Ham:  
Zhang,Lewandowksi, Ma '18 

Zhang,Lewandowski, Li, Ma '19 ]



4 Scalar Fields Model: Reference Matter
Idea: Use 4 scalar fields to reduce wrt Hamiltonian & diffeo constraints

Idea: Solve  C for momentum P:

Only SU(2) gauge constraint is solved at the quantum level
Reference fields are four massless scalar fields
In order to formulate the model we need:

Observables wrt to spatial diffeom. & Hamiltonian constraint
Use       as time and       as spatial reference fields
Dynamics: Physical Hamiltonian 
Representation of reduced phase space: with

'0 'j

Hphys Ĥphys

S =

Z
d4X
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4 Scalar Fields Model: Observables
Need to construct: 

Idea: Solve  C for momentum P:

          can be obtained using standard LQG techniques

[Kuchar 1991 ]

OA,'I (⌧,�k), OE,'I (⌧,�k)

Reduced algebra: {OA,'I (⌧,�k), OE,'I (⌧, �̃k)} = �
(3)(�, �̃)

Hphys

However, classical physical Hamiltonian:

with physical Hamiltonian density

Realize: �jkCgeo
j Cgeo

k cannot be quantized using LQG techniques!

C̃tot = ⇡0 � h

Result consistent with Kuchar’s 8 scalar field model

Hence: Dirac quantization Warsaw model works
Reduced 4 scalar fields model: No quantum dynamics!

Hphys =

Z
d3�H(�)

H(�) =
q

�2
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qCgeo � qjk�jk � �jkCgeo

j C
geo
k

[Rovelli ’90, Dittrich  '05]



Generalize 4 Scalar Fields Model
Idea: Use 4 scalar fields to reduce wrt Hamiltonian & diffeo constraints

Idea: Solve  C for momentum P:

Assume particular form: 
Get 6 new dof: (Mjj ,⇧

jj)

However, also 3 new primary 
constraints: ⇧jj ' 0
Turns out add. 3 secondary 
constraints: c̃jj ' 0

Realize:               build second class pairc̃jj ,⇧jj

Partially reduced phase space wrt              has original number of dofc̃jj ,⇧jj
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Generalize 4 Scalar Fields Model
Furthermore: Need to consider Dirac bracket wrt 

Idea: Solve  C for momentum P:

Fortunately, Dirac bracket coincides with Poisson bracket for all 
variables but 

Thus: in partially reduced phase space can work with Poisson brackets
Implementing               strongly modifies physical Hamiltonian  

c̃jj ,⇧jj

(Mjj ,⇧
jj)

c̃jj = 0

We end up with an LQG quantizable:

with physical Hamiltonian density

[K.G., Vetter, ’16 and ’19]
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O

(j)
J O

(j)
K �JK

Quantization of Physical Hamiltonian

Quantization of                       standard volume and Ham. constr. operator

Idea: Solve  C for momentum P:

Consider quantisation of  

[K.G., Vetter, ’16 and ’19]
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Quantization of Physical Hamiltonian

Idea: Solve  C for momentum P:

Point splitting regularization for 

label j:  

We end up with the operator: [K.G., Vetter, ’16 and ’19]
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Action of Hamiltonian operator
Action of the first term:

Idea: Solve  C for momentum P:

second term: LQG: embedding dependent, can have trivial contribution
Quantization within AQG framework: graph-preserving, second term 
does not contribute. 
 

ae,e′

e
′

e

e
′′

eℓ
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v

Action of the second term:

Contributions of the second term can be interpreted as deviations 
from one scalar field model. 

e
′

e
′′

eℓ
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ej

e

e(j)

e
′

(k)

v

ae′,e′(k)

ae,e(j)

Possible conclusion: prefer models with covariant form of Ĥphys



III. Summary and Conclusions
Have discussed Dirac and reduced phase space 
quantization for LQG

As expected particular form of Quantum Einstein Equations 
depends on choices, in particular gauge fixing
Important to analyze models in detail and compare them:

Also want to understand Dirac versus reduced quantization and 
how this effects physical properties of models not only for these 
particular two models.

LQG program can be completed in such models

Choice of operator ordering, also consider second natural option
Consider symmetry reduced models where differs are non-vanishing 
(work in progress)



III. Summary and Conclusions

Wszystkiego najlepszego z okazji urodzin Jurek!

Sto Lat!


