Conformally isometric embeddings and Hawking temperature

Maciej Dunajski

Clare College and Department of Applied Mathematics and Theoretical Physics University of Cambridge.

- Maciej Dunajski, Paul Tod (2019) Conformally isometric embeddings and Hawking temperature, arXiv: 1812.05468, CQG 2019.
- Maciej Dunajski, Paul Tod (2019) Conformal and isometric embeddings of Gravitational Instantons, Preprint.

DUNAJSKI (DAMTP, CAMBRIDGE)

Conformal embeddings

MANIFOLDS THROUGHOUT THE CENTURIES

• 19th century. Surfaces

MANIFOLDS THROUGHOUT THE CENTURIES

• 19th century. Surfaces

• 20th century. Atlases

MANIFOLDS THROUGHOUT THE CENTURIES

• 19th century. Surfaces

• 20th century. Atlases

• The Whitney embedding theorem: any n-dimensional manifold can be embedded in \mathbb{R}^N as a surface, where N is at most 2n.

 A (pseudo) Riemannian curved metric g on M is induced from a flat metric η on ℝ^N:

$$\iota: M \to \mathbb{R}^N, \quad g(V, V) = \iota^* \eta(\iota_*(V), \iota_*(V)).$$

 A (pseudo) Riemannian curved metric g on M is induced from a flat metric η on ℝ^N:

$$\iota: M \to \mathbb{R}^N, \quad g(V, V) = \iota^* \eta(\iota_*(V), \iota_*(V)).$$

• Folk saying: any surface can be localy isometrically embeded in \mathbb{R}^3 .

 A (pseudo) Riemannian curved metric g on M is induced from a flat metric η on ℝ^N:

$$\iota: M \to \mathbb{R}^N, \quad g(V, V) = \iota^* \eta(\iota_*(V), \iota_*(V)).$$

- Folk saying: any surface can be localy isometrically embeded in \mathbb{R}^3 .
- Improved folk saying: The Cartan–Janet theorem (local, real analytic). $N \le n(n+1)/2$.

 A (pseudo) Riemannian curved metric g on M is induced from a flat metric η on ℝ^N:

$$\iota: M \to \mathbb{R}^N, \quad g(V, V) = \iota^* \eta(\iota_*(V), \iota_*(V)).$$

- Folk saying: any surface can be localy isometrically embeded in \mathbb{R}^3 .
- Improved folk saying: The Cartan–Janet theorem (local, real analytic). $N \le n(n+1)/2$.
- Thomas (1925), Berger, Bryant, Griffiths (1983): Holonomy obstructions and rigidity theorems if N < n(n+1)/2.

$$\iota: M \to \mathbb{R}^N, \quad g(V, V) = \iota^* \eta(\iota_*(V), \iota_*(V)).$$

- Folk saying: any surface can be localy isometrically embeded in \mathbb{R}^3 .
- Improved folk saying: The Cartan–Janet theorem (local, real analytic). $N \leq n(n+1)/2.$
- Thomas (1925), Berger, Bryant, Griffiths (1983): Holonomy obstructions and rigidity theorems if N < n(n+1)/2.
- The Nash-Clarke global embedding theorems (C^3 embeddings)

 $N \leq n(2n^2+37)/6 + 5n^2/2 + 3 \quad \text{if g is Lorentzian}.$

$$\iota: M \to \mathbb{R}^N, \quad g(V, V) = \iota^* \eta(\iota_*(V), \iota_*(V)).$$

- Folk saying: any surface can be localy isometrically embeded in \mathbb{R}^3 .
- Improved folk saying: The Cartan–Janet theorem (local, real analytic). $N \leq n(n+1)/2.$
- Thomas (1925), Berger, Bryant, Griffiths (1983): Holonomy obstructions and rigidity theorems if N < n(n+1)/2.
- The Nash-Clarke global embedding theorems (C^3 embeddings)

$$N \leq n(2n^2+37)/6 + 5n^2/2 + 3 \quad \text{if g is Lorentzian}.$$

• Embedding class = the smallest integer N - n

$$\iota: M \to \mathbb{R}^N, \quad g(V, V) = \iota^* \eta(\iota_*(V), \iota_*(V)).$$

- Folk saying: any surface can be localy isometrically embeded in \mathbb{R}^3 .
- Improved folk saying: The Cartan–Janet theorem (local, real analytic). $N \le n(n+1)/2$.
- Thomas (1925), Berger, Bryant, Griffiths (1983): Holonomy obstructions and rigidity theorems if N < n(n+1)/2.
- The Nash–Clarke global embedding theorems (C^3 embeddings)

$$N \le n(2n^2 + 37)/6 + 5n^2/2 + 3$$
 if g is Lorentzian.

- Embedding class = the smallest integer N n
 - The Schwarzchild metric: embedding class 2 (local Kasner (1921), global Fronsdal (1959)).

$$\iota: M \to \mathbb{R}^N, \quad g(V, V) = \iota^* \eta(\iota_*(V), \iota_*(V)).$$

- Folk saying: any surface can be localy isometrically embeded in \mathbb{R}^3 .
- Improved folk saying: The Cartan–Janet theorem (local, real analytic). $N \leq n(n+1)/2.$
- Thomas (1925), Berger, Bryant, Griffiths (1983): Holonomy obstructions and rigidity theorems if N < n(n+1)/2.
- The Nash–Clarke global embedding theorems (C^3 embeddings)

$$N \le n(2n^2 + 37)/6 + 5n^2/2 + 3$$
 if g is Lorentzian.

- Embedding class = the smallest integer N n
 - The Schwarzchild metric: embedding class 2 (local Kasner (1921), global - Fronsdal (1959)).
 - Fubini-Study metric on CP²: embedding class still not known (neither local not global!). At least 3, at most 4.

DUNAJSKI (DAMTP, CAMBRIDGE)

• An immersion $\iota : (M,g) \to \mathbb{R}^N$ such that $\iota^*(\eta) = \Omega^2 g$ for some $\Omega : M \to \mathbb{R}^+$, and $\iota(M) \subset \mathbb{R}^N$ is diffeomorphic to M.

- An immersion $\iota : (M,g) \to \mathbb{R}^N$ such that $\iota^*(\eta) = \Omega^2 g$ for some $\Omega : M \to \mathbb{R}^+$, and $\iota(M) \subset \mathbb{R}^N$ is diffeomorphic to M.
- The Jacobowitz–Moore thm (local, analytic): $N \le n(n+1)/2 1$.

- An immersion $\iota : (M,g) \to \mathbb{R}^N$ such that $\iota^*(\eta) = \Omega^2 g$ for some $\Omega : M \to \mathbb{R}^+$, and $\iota(M) \subset \mathbb{R}^N$ is diffeomorphic to M.
- The Jacobowitz–Moore thm (local, analytic): $N \le n(n+1)/2 1$.
- Naive counting: N embedding functions X^1, \ldots, X^N of local coordinates x^1, \ldots, x^n such that $g = g_{ab}(x)dx^a dx^b$.

$$\eta_{\alpha\beta}\frac{\partial X^{\alpha}}{\partial x^{a}}\frac{\partial X^{\beta}}{\partial x^{b}} = \Omega^{2}g_{ab}, \quad \alpha, \beta = 1, \dots, N, \quad a, b = 1, \dots, n.$$

n(n+1)/2 PDEs for (N+1) unknown functions (X^{α},Ω) of $x^{a}.$

- An immersion $\iota : (M,g) \to \mathbb{R}^N$ such that $\iota^*(\eta) = \Omega^2 g$ for some $\Omega : M \to \mathbb{R}^+$, and $\iota(M) \subset \mathbb{R}^N$ is diffeomorphic to M.
- The Jacobowitz–Moore thm (local, analytic): $N \le n(n+1)/2 1$.
- Naive counting: N embedding functions X^1, \ldots, X^N of local coordinates x^1, \ldots, x^n such that $g = g_{ab}(x)dx^a dx^b$.

$$\eta_{\alpha\beta}\frac{\partial X^{\alpha}}{\partial x^{a}}\frac{\partial X^{\beta}}{\partial x^{b}} = \Omega^{2}g_{ab}, \quad \alpha, \beta = 1, \dots, N, \quad a, b = 1, \dots, n.$$

n(n+1)/2 PDEs for (N+1) unknown functions (X^{α},Ω) of $x^{a}.$ \bullet This talk:

- An immersion $\iota : (M,g) \to \mathbb{R}^N$ such that $\iota^*(\eta) = \Omega^2 g$ for some $\Omega : M \to \mathbb{R}^+$, and $\iota(M) \subset \mathbb{R}^N$ is diffeomorphic to M.
- The Jacobowitz–Moore thm (local, analytic): $N \le n(n+1)/2 1$.
- Naive counting: N embedding functions X^1, \ldots, X^N of local coordinates x^1, \ldots, x^n such that $g = g_{ab}(x)dx^a dx^b$.

$$\eta_{\alpha\beta}\frac{\partial X^{\alpha}}{\partial x^{a}}\frac{\partial X^{\beta}}{\partial x^{b}} = \Omega^{2}g_{ab}, \quad \alpha, \beta = 1, \dots, N, \quad a, b = 1, \dots, n.$$

n(n+1)/2 PDEs for (N+1) unknown functions (X^{α}, Ω) of x^{a} . • This talk:

1 Global conformal embedding of the Schwarzchild metric.

- An immersion $\iota : (M,g) \to \mathbb{R}^N$ such that $\iota^*(\eta) = \Omega^2 g$ for some $\Omega : M \to \mathbb{R}^+$, and $\iota(M) \subset \mathbb{R}^N$ is diffeomorphic to M.
- The Jacobowitz–Moore thm (local, analytic): $N \le n(n+1)/2 1$.
- Naive counting: N embedding functions X^1, \ldots, X^N of local coordinates x^1, \ldots, x^n such that $g = g_{ab}(x)dx^a dx^b$.

$$\eta_{\alpha\beta}\frac{\partial X^{\alpha}}{\partial x^{a}}\frac{\partial X^{\beta}}{\partial x^{b}} = \Omega^{2}g_{ab}, \quad \alpha, \beta = 1, \dots, N, \quad a, b = 1, \dots, n.$$

n(n+1)/2 PDEs for (N+1) unknown functions (X^α,Ω) of $x^a.$

This talk:

(Global conformal embedding of the Schwarzchild metric.

Obstructions to conformal embeddings of class 1

- An immersion $\iota : (M,g) \to \mathbb{R}^N$ such that $\iota^*(\eta) = \Omega^2 g$ for some $\Omega : M \to \mathbb{R}^+$, and $\iota(M) \subset \mathbb{R}^N$ is diffeomorphic to M.
- The Jacobowitz–Moore thm (local, analytic): $N \le n(n+1)/2 1$.
- Naive counting: N embedding functions X^1, \ldots, X^N of local coordinates x^1, \ldots, x^n such that $g = g_{ab}(x)dx^a dx^b$.

$$\eta_{\alpha\beta}\frac{\partial X^{\alpha}}{\partial x^{a}}\frac{\partial X^{\beta}}{\partial x^{b}} = \Omega^{2}g_{ab}, \quad \alpha, \beta = 1, \dots, N, \quad a, b = 1, \dots, n.$$

n(n+1)/2 PDEs for (N+1) unknown functions (X^{α},Ω) of $x^{a}.$

This talk:

- **(**) Global conformal embedding of the Schwarzchild metric.
- Obstructions to conformal embeddings of class 1
- Hawking and Unruh temperatures.

• Given an Einstein Lorentzian four-manifold (M,g), seek an isometric embedding of $\hat{g} = \Omega^2 g$ into \mathbb{R}^5 , with second fundamental form

$$\hat{K}_{ab} = \hat{\sigma}_{ab} + \frac{1}{4}\hat{K}\hat{g}_{ab}$$

• Given an Einstein Lorentzian four-manifold (M,g), seek an isometric embedding of $\hat{g} = \Omega^2 g$ into \mathbb{R}^5 , with second fundamental form

$$\hat{K}_{ab} = \hat{\sigma}_{ab} + \frac{1}{4}\hat{K}\hat{g}_{ab}$$

• Conformal rescallings and spinors: $\hat{C}^{d}_{abc} = C^{d}_{abc}$, $\hat{\sigma}_{ab} = \Omega \sigma_{ab}$ $C_{abcd} = \psi_{ABCD} \epsilon_{A'B'} \epsilon_{C'D'} + \psi_{A'B'C'D'} \epsilon_{AB} \epsilon_{CD}$.

• Given an Einstein Lorentzian four-manifold (M,g), seek an isometric embedding of $\hat{g} = \Omega^2 g$ into \mathbb{R}^5 , with second fundamental form

$$\hat{K}_{ab} = \hat{\sigma}_{ab} + \frac{1}{4}\hat{K}\hat{g}_{ab}$$

- Conformal rescallings and spinors: $\hat{C}^{d}_{abc} = C^{d}_{abc}$, $\hat{\sigma}_{ab} = \Omega \sigma_{ab}$ $C_{abcd} = \psi_{ABCD} \epsilon_{A'B'} \epsilon_{C'D'} + \psi_{A'B'C'D'} \epsilon_{AB} \epsilon_{CD}$.
- Theorem 1. The necessary and sufficient conditions for the exitence of a local conformal embedding of class 1, with the trace-free part of \hat{K}_{ab} given by $\Omega\sigma_{ab}$ are

$$\nabla_{A'(A}\sigma_{BC)B'}^{A'} = 0, \ \sigma_{(AB}^{C'D'}\sigma_{CD)C'D'} = \pm 2\psi_{ABCD} \quad (*).$$

Given a solution to (*), there exists a 6D space of pairs (Ω, \hat{K}) .

• Given an Einstein Lorentzian four-manifold (M,g), seek an isometric embedding of $\hat{g} = \Omega^2 g$ into \mathbb{R}^5 , with second fundamental form

$$\hat{K}_{ab} = \hat{\sigma}_{ab} + \frac{1}{4}\hat{K}\hat{g}_{ab}$$

• Conformal rescallings and spinors: $\hat{C}^d_{abc} = C^d_{abc}, \ \hat{\sigma}_{ab} = \Omega \sigma_{ab}$

$$C_{abcd} = \psi_{ABCD} \epsilon_{A'B'} \epsilon_{C'D'} + \psi_{A'B'C'D'} \epsilon_{AB} \epsilon_{CD}.$$

• Theorem 1. The necessary and sufficient conditions for the exitence of a local conformal embedding of class 1, with the trace-free part of \hat{K}_{ab} given by $\Omega\sigma_{ab}$ are

$$\nabla_{A'(A}\sigma_{BC)B'}^{A'} = 0, \ \sigma_{(AB}^{C'D'}\sigma_{CD)C'D'} = \pm 2\psi_{ABCD} \quad (*).$$

Given a solution to (*), there exists a 6D space of pairs (Ω, \hat{K}) .

• Theorem 2. A local conformal embedding ι of Theorem 1, such that rank (K_{ab}) is maximal at some $p \in M$, is rigid in a neighbourhood of p up to conformal transformations of $\mathbb{R}^{r,s}$, r + s = 5.

Class. Quantum Grav. 8 (1991) L11-L17. Printed in the UK

LETTER TO THE EDITOR

Twistor equation in a curved spacetime

Jerzy Lewandowski

Institute of Theoretical Physics, Warsaw University, 00-681 Warsaw, Hoża 69, Poland

Received 29 August 1990, in final form 25 October 1990

Abstract. The twistor equation is studied in a four-real-dimensional spacetime. All the metric tensors which locally admit a solution are found. They either belong to the Fefferman class or are given by the Trautman-Kerr-Schild anzatz by using a non-twisting null conformal Killing vector field in the Minkowski spacetime. The corresponding solutions are derived.

• Algebraic invariants of the Weyl tensor

 $I = \psi_{ABCD} \psi^{ABCD}, \quad J = \psi_{AB}{}^{CD} \psi_{CD}{}^{EF} \psi_{EF}{}^{AB}.$

Algebraically special $J^2 - 6I^3 = 0$. Type 3, or type N: I = J = 0.

• Algebraic invariants of the Weyl tensor

$$I = \psi_{ABCD} \psi^{ABCD}, \quad J = \psi_{AB}{}^{CD} \psi_{CD}{}^{EF} \psi_{EF}{}^{AB}$$

Algebraically special $J^2 - 6I^3 = 0$. Type 3, or type N: I = J = 0.

- Proposition 1. Reality of *I* and *J* is necessary for existence of a class one conformal embedding.
- Corollary: the Kerr metric does not admit a class 1 conf. embedding.

• Algebraic invariants of the Weyl tensor

$$I = \psi_{ABCD} \psi^{ABCD}, \quad J = \psi_{AB}{}^{CD} \psi_{CD}{}^{EF} \psi_{EF}{}^{AB}$$

Algebraically special $J^2 - 6I^3 = 0$. Type 3, or type N: I = J = 0.

- Proposition 1. Reality of *I* and *J* is necessary for existence of a class one conformal embedding.
- Corollary: the Kerr metric does not admit a class 1 conf. embedding.
- Riemannian, or neutral signature: self-dual, and anti-self-dual Weyl spinors C' and C are independent.

• Algebraic invariants of the Weyl tensor

$$I = \psi_{ABCD} \psi^{ABCD}, \quad J = \psi_{AB}{}^{CD} \psi_{CD}{}^{EF} \psi_{EF}{}^{AB}$$

Algebraically special $J^2 - 6I^3 = 0$. Type 3, or type N: I = J = 0.

- Proposition 1. Reality of *I* and *J* is necessary for existence of a class one conformal embedding.
- Corollary: the Kerr metric does not admit a class 1 conf. embedding.
- Riemannian, or neutral signature: self-dual, and anti-self-dual Weyl spinors C' and C are independent.
- Proposition 2. The conditions

$$I = I', \quad J = J'$$

are necessary for existence of a class one conformal embedding.

• Corollary: A Riemannian manifold with self-dual Weyl tensor admits a class one conformal embedding iff it is conformally flat.

• Algebraic invariants of the Weyl tensor

$$I = \psi_{ABCD} \psi^{ABCD}, \quad J = \psi_{AB}{}^{CD} \psi_{CD}{}^{EF} \psi_{EF}{}^{AB}$$

Algebraically special $J^2 - 6I^3 = 0$. Type 3, or type N: I = J = 0.

- Proposition 1. Reality of *I* and *J* is necessary for existence of a class one conformal embedding.
- Corollary: the Kerr metric does not admit a class 1 conf. embedding.
- Riemannian, or neutral signature: self-dual, and anti-self-dual Weyl spinors C' and C are independent.
- Proposition 2. The conditions

$$I = I', \quad J = J'$$

are necessary for existence of a class one conformal embedding.

- Corollary: A Riemannian manifold with self-dual Weyl tensor admits a class one conformal embedding iff it is conformally flat.
- The conformal embedding class of CP² is therefore at least two. It is known to be at most three. What is it?

DUNAJSKI (DAMTP, CAMBRIDGE)

• $g = V dt^2 - V^{-1} dr^2 - r^2 (d\theta^2 + \sin^2 d\phi^2)$, where V = V(r) has a finite number of simple zeroes $r_0 > r_1 > r_2 \dots$.

- $g = V dt^2 V^{-1} dr^2 r^2 (d\theta^2 + \sin^2 d\phi^2)$, where V = V(r) has a finite number of simple zeroes $r_0 > r_1 > r_2 \dots$.
- Theorem 3. If the conformal embedding $\iota:M\to \mathbb{R}^5$ is global on at least one sphere of symmetry, then

- $g = V dt^2 V^{-1} dr^2 r^2 (d\theta^2 + \sin^2 d\phi^2)$, where V = V(r) has a finite number of simple zeroes $r_0 > r_1 > r_2 \dots$.
- Theorem 3. If the conformal embedding $\iota: M \to \mathbb{R}^5$ is global on at least one sphere of symmetry, then
 - σ_{ab} is spherically symmetric, and ι can be chosen to be spherically symmetric.

- $g = V dt^2 V^{-1} dr^2 r^2 (d\theta^2 + \sin^2 d\phi^2)$, where V = V(r) has a finite number of simple zeroes $r_0 > r_1 > r_2 \dots$.
- Theorem 3. If the conformal embedding $\iota:M\to \mathbb{R}^5$ is global on at least one sphere of symmetry, then
 - σ_{ab} is spherically symmetric, and ι can be chosen to be spherically symmetric.
 - In the real analytic category the embedding depends on two arbitrary functions of one variable.

- $g = V dt^2 V^{-1} dr^2 r^2 (d\theta^2 + \sin^2 d\phi^2)$, where V = V(r) has a finite number of simple zeroes $r_0 > r_1 > r_2 \dots$.
- Theorem 3. If the conformal embedding $\iota:M\to \mathbb{R}^5$ is global on at least one sphere of symmetry, then
 - σ_{ab} is spherically symmetric, and ι can be chosen to be spherically symmetric.
 - In the real analytic category the embedding depends on two arbitrary functions of one variable.
 - Proof: GHP formalism and harmonic analysis for part one. Cauchy–Kowalewska for part two.

Spherically symmetric conformal embedding

- $g = V dt^2 V^{-1} dr^2 r^2 (d\theta^2 + \sin^2 d\phi^2)$, where V = V(r) has a finite number of simple zeroes $r_0 > r_1 > r_2 \dots$.
- Theorem 3. If the conformal embedding $\iota:M\to \mathbb{R}^5$ is global on at least one sphere of symmetry, then
 - σ_{ab} is spherically symmetric, and ι can be chosen to be spherically symmetric.
 - In the real analytic category the embedding depends on two arbitrary functions of one variable.
 - Proof: GHP formalism and harmonic analysis for part one. Cauchy–Kowalewska for part two.
- An example of a regular embedding

$$\Omega^2 g = dT^2 - dX^2 - dR^2 - R^2 (d\theta^2 + \sin\theta^2 d\phi^2). \text{ Set } \Omega = R/r.$$

Spherically symmetric conformal embedding

- $g = V dt^2 V^{-1} dr^2 r^2 (d\theta^2 + \sin^2 d\phi^2)$, where V = V(r) has a finite number of simple zeroes $r_0 > r_1 > r_2 \dots$.
- Theorem 3. If the conformal embedding $\iota:M\to \mathbb{R}^5$ is global on at least one sphere of symmetry, then
 - σ_{ab} is spherically symmetric, and ι can be chosen to be spherically symmetric.
 - In the real analytic category the embedding depends on two arbitrary functions of one variable.
 - Proof: GHP formalism and harmonic analysis for part one. Cauchy–Kowalewska for part two.
- An example of a regular embedding

$$\Omega^2 g = dT^2 - dX^2 - dR^2 - R^2 (d\theta^2 + \sin\theta^2 d\phi^2). \text{ Set } \Omega = R/r.$$

• Find an isometric embedding of $r^{-2}(V^{-1}dr^2 - Vdt^2)$ in AdS_3

$$\frac{dR^2 + dX^2 - dT^2}{R^2}$$

• The unique static, spherically symmetric, global conformal embedding.

∃ ► < ∃ ►</p>

- The unique static, spherically symmetric, global conformal embedding.
- $T = \sinh{(ta)}\frac{h(r)}{ar}\sqrt{V(r)}, X = \cosh{(ta)}\frac{h(r)}{ar}\sqrt{V(r)}, R = h(r)$, where

$$h = \exp\Big(\int \frac{V(2V - rV') \pm ar\sqrt{V(4V + 4a^2r^2 - (2V - rV')^2)}}{2rV(a^2r^2 + V)}dr\Big).$$

- The unique static, spherically symmetric, global conformal embedding.
- $T = \sinh{(ta)}\frac{h(r)}{ar}\sqrt{V(r)}, X = \cosh{(ta)}\frac{h(r)}{ar}\sqrt{V(r)}, R = h(r)$, where

$$h = \exp\Big(\int \frac{V(2V - rV') \pm ar\sqrt{V(4V + 4a^2r^2 - (2V - rV')^2)}}{2rV(a^2r^2 + V)}dr\Big).$$

• Regularity at a zero $r = \bar{r}$ of V: $a = \pm \frac{1}{2}V'|_{r=\bar{r}}$ (the surface gravity).

- The unique static, spherically symmetric, global conformal embedding.
- $T = \sinh{(ta)}\frac{h(r)}{ar}\sqrt{V(r)}, X = \cosh{(ta)}\frac{h(r)}{ar}\sqrt{V(r)}, R = h(r)$, where

$$h = \exp\Big(\int \frac{V(2V - rV') \pm ar\sqrt{V(4V + 4a^2r^2 - (2V - rV')^2)}}{2rV(a^2r^2 + V)}dr\Big).$$

- Regularity at a zero $r = \bar{r}$ of V: $a = \pm \frac{1}{2}V'|_{r=\bar{r}}$ (the surface gravity).
- If $V \to 1$ as $r \to \infty$, then $R \sim r$ and $\Omega \sim 1$ as $r \to \infty$.

・ロト ・回ト ・ヨト ・ヨト ・ ヨー うへの

- The unique static, spherically symmetric, global conformal embedding.
- $T = \sinh{(ta)}\frac{h(r)}{ar}\sqrt{V(r)}, X = \cosh{(ta)}\frac{h(r)}{ar}\sqrt{V(r)}, R = h(r)$, where

$$h = \exp\Big(\int \frac{V(2V - rV') \pm ar\sqrt{V(4V + 4a^2r^2 - (2V - rV')^2)}}{2rV(a^2r^2 + V)}dr\Big).$$

Regularity at a zero r = r̄ of V: a = ±¹/₂V'|_{r=r̄} (the surface gravity).
If V → 1 as r → ∞, then R ~ r and Ω ~ 1 as r → ∞.

•
$$V = 1 - 2m/r$$
, $R(r) = \exp\left(\int \frac{p}{q} dr\right)$, where

$$p = 48m^3 - 16m^2r - r^{3/2}\sqrt{r^3 + 2mr^2 + 4m^2r + 72m^3},$$

$$q = (32m^3 - 16m^2r - r^3)r.$$

・ロト ・回ト ・ヨト ・ヨト ・ ヨー うへの

NULL INFINITIES - WHAT HAPPENED TO SCRI?

• Theorem 4. Let $(\mathcal{I}_{\pm})^{Schw}$ and $(\mathcal{I}_{\pm})^5$ be null infinities of the compactified Schwarzschild \overline{M} , and the compactified Minkowski $\overline{\mathbb{R}}^{4,1}$. The conformal embedding extends to a map $\iota : \overline{M} \to \overline{\mathbb{R}}^{4,1}$ s. t. $\iota((\mathcal{I}_{\pm})^{Schw}) = p_{\pm}$ where $p_{-} \in (\mathcal{I}_{-})^5$ and $p_{+} \in (\mathcal{I}_{+})^5$ are points with coordinates $(0, N \subset S^3)$.

• The Hawking effect: a temperature measured by asymptotic observers is $\mathbf{T}_{H}=\kappa/2\pi,$ where

 $\nabla_a(|K|^2) = -2\kappa K_a, \quad \text{and} \quad g(K,K) = 0 \quad \text{is a Killing horizon}.$

• The Hawking effect: a temperature measured by asymptotic observers is $\mathbf{T}_{H} = \kappa/2\pi$, where

 $\nabla_a(|K|^2)=-2\kappa K_a,\quad \text{and}\quad g(K,K)=0\quad \text{is a Killing horizon}.$

• The Unruh effect: an observer moving with constant acceleration α in the Minkowski space measures a temperature $\mathbf{T}_U = \alpha/2\pi$.

<ロ> (四) (四) (注) (三) (三)

• The Hawking effect: a temperature measured by asymptotic observers is $\mathbf{T}_{H} = \kappa/2\pi$, where

 $\nabla_a(|K|^2)=-2\kappa K_a,\quad \text{and}\quad g(K,K)=0\quad \text{is a Killing horizon}.$

- The Unruh effect: an observer moving with constant acceleration α in the Minkowski space measures a temperature $\mathbf{T}_U = \alpha/2\pi$.
- Deser and Levin (1999): The Hawking temperature in (M,g) equals the Unruh temperature in an isometric embedding extending through the Killing horizon.

• The Hawking effect: a temperature measured by asymptotic observers is $\mathbf{T}_{H} = \kappa/2\pi$, where

 $\nabla_a(|K|^2)=-2\kappa K_a,\quad \text{and}\quad g(K,K)=0\quad \text{is a Killing horizon}.$

- The Unruh effect: an observer moving with constant acceleration α in the Minkowski space measures a temperature $\mathbf{T}_U = \alpha/2\pi$.
- Deser and Levin (1999): The Hawking temperature in (M,g) equals the Unruh temperature in an isometric embedding extending through the Killing horizon.
- Holds for the conformal isometric embedding of Schwarzchild in $\mathbb{R}^{4,1}$:

<ロ> (四) (四) (注) (三) (三)

• The Hawking effect: a temperature measured by asymptotic observers is $\mathbf{T}_{H} = \kappa/2\pi$, where

 $\nabla_a(|K|^2)=-2\kappa K_a,\quad \text{and}\quad g(K,K)=0\quad \text{is a Killing horizon}.$

- The Unruh effect: an observer moving with constant acceleration α in the Minkowski space measures a temperature $\mathbf{T}_U = \alpha/2\pi$.
- Deser and Levin (1999): The Hawking temperature in (M,g) equals the Unruh temperature in an isometric embedding extending through the Killing horizon.
- Holds for the conformal isometric embedding of Schwarzchild in ℝ^{4,1}:
 (M, ĝ) not Einstein, but Hawking effect is kinematical.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• The Hawking effect: a temperature measured by asymptotic observers is $\mathbf{T}_{H} = \kappa/2\pi$, where

 $\nabla_a(|K|^2)=-2\kappa K_a,\quad \text{and}\quad g(K,K)=0\quad \text{is a Killing horizon}.$

- The Unruh effect: an observer moving with constant acceleration α in the Minkowski space measures a temperature $\mathbf{T}_U = \alpha/2\pi$.
- Deser and Levin (1999): The Hawking temperature in (M,g) equals the Unruh temperature in an isometric embedding extending through the Killing horizon.
- Holds for the conformal isometric embedding of Schwarzchild in ℝ^{4,1}:
 (M, ĝ) not Einstein, but Hawking effect is kinematical.
 - **2** The surface gravity is conformally invariant as long as Ω and $d\Omega$ are regular on the horizon, Ω is static, and $\Omega \to 1$ when $r \to \infty$.

• The Hawking effect: a temperature measured by asymptotic observers is $\mathbf{T}_{H} = \kappa/2\pi$, where

 $\nabla_a(|K|^2) = -2\kappa K_a, \quad \text{and} \quad g(K,K) = 0 \quad \text{is a Killing horizon}.$

- The Unruh effect: an observer moving with constant acceleration α in the Minkowski space measures a temperature $\mathbf{T}_U = \alpha/2\pi$.
- Deser and Levin (1999): The Hawking temperature in (M,g) equals the Unruh temperature in an isometric embedding extending through the Killing horizon.
- Holds for the conformal isometric embedding of Schwarzchild in ℝ^{4,1}:
 (M, ĝ) not Einstein, but Hawking effect is kinematical.
 - **②** The surface gravity is conformally invariant as long as Ω and $d\Omega$ are regular on the horizon, Ω is static, and $\Omega \to 1$ when $r \to \infty$.
 - **③** A trajectory of $K = \partial/\partial t$ in M lifts to a hyperbola in $\mathbb{R}^{4,1}$

$$X_1^2 - X_0^2 = \frac{16m^2h(r)^2}{r^2} \left(1 - \frac{2m}{r}\right) \equiv \alpha^{-2}, \text{ where } r \text{ fixed.}$$

• The Hawking effect: a temperature measured by asymptotic observers is $\mathbf{T}_{H} = \kappa/2\pi$, where

 $\nabla_a(|K|^2) = -2\kappa K_a, \quad \text{and} \quad g(K,K) = 0 \quad \text{is a Killing horizon}.$

- The Unruh effect: an observer moving with constant acceleration α in the Minkowski space measures a temperature $\mathbf{T}_U = \alpha/2\pi$.
- Deser and Levin (1999): The Hawking temperature in (M,g) equals the Unruh temperature in an isometric embedding extending through the Killing horizon.
- Holds for the conformal isometric embedding of Schwarzchild in ℝ^{4,1}:
 (M, ĝ) not Einstein, but Hawking effect is kinematical.
 - **②** The surface gravity is conformally invariant as long as Ω and $d\Omega$ are regular on the horizon, Ω is static, and $\Omega \to 1$ when $r \to \infty$.
 - **③** A trajectory of $K = \partial/\partial t$ in M lifts to a hyperbola in $\mathbb{R}^{4,1}$

$$X_1^2 - X_0^2 = \frac{16m^2h(r)^2}{r^2} \left(1 - \frac{2m}{r}\right) \equiv \alpha^{-2}, \text{ where } r \text{ fixed.}$$

() Use Tolman's law, take a limit $r \to \infty$.

• Extend to higher-dimensional black-holes, and use to study the causal properties of asymptoticaly flat space-times (Peter Cameron, in progress).

臣

★ Ξ > < Ξ >

- Extend to higher-dimensional black-holes, and use to study the causal properties of asymptoticaly flat space-times (Peter Cameron, in progress).
- Develop the rigidity theory of conformal embeddings of classes between 2 and n(n+1)/2 1 (Cartan–Kähler theory, prolongations).

米部 シネヨシネヨシ 三日

- Extend to higher-dimensional black-holes, and use to study the causal properties of asymptoticaly flat space-times (Peter Cameron, in progress).
- Develop the rigidity theory of conformal embeddings of classes between 2 and n(n+1)/2 1 (Cartan–Kähler theory, prolongations).
- Find a global conformal embedding of extreme Reissner-Nordström.

・ 「「・ ・ 」 ・ ・ 」 正

- Extend to higher-dimensional black-holes, and use to study the causal properties of asymptoticaly flat space-times (Peter Cameron, in progress).
- Develop the rigidity theory of conformal embeddings of classes between 2 and n(n+1)/2 1 (Cartan–Kähler theory, prolongations).
- Find a global conformal embedding of extreme Reissner-Nordström.
- Find (or rule out!) a conformal isometric embedding of \mathbb{CP}^2 in \mathbb{R}^6 .

(本部) (本語) (本語) (二語

- Extend to higher-dimensional black-holes, and use to study the causal properties of asymptoticaly flat space-times (Peter Cameron, in progress).
- Develop the rigidity theory of conformal embeddings of classes between 2 and n(n+1)/2-1 (Cartan–Kähler theory, prolongations).
- Find a global conformal embedding of extreme Reissner-Nordström.
- Find (or rule out!) a conformal isometric embedding of \mathbb{CP}^2 in \mathbb{R}^6 .
- Embeddings (isometric, conformal) of gravitational instantons: Eguchi–Hanson, self–dual Taub NUT can be explicitly isometrically embedded in \mathbb{R}^8 , and can not be isometrically embedded in \mathbb{R}^6 . What is their embedding class?

- Extend to higher-dimensional black-holes, and use to study the causal properties of asymptoticaly flat space-times (Peter Cameron, in progress).
- Develop the rigidity theory of conformal embeddings of classes between 2 and n(n+1)/2-1 (Cartan–Kähler theory, prolongations).
- Find a global conformal embedding of extreme Reissner-Nordström.
- Find (or rule out!) a conformal isometric embedding of \mathbb{CP}^2 in \mathbb{R}^6 .
- Embeddings (isometric, conformal) of gravitational instantons: Eguchi–Hanson, self–dual Taub NUT can be explicitly isometrically embedded in \mathbb{R}^8 , and can not be isometrically embedded in \mathbb{R}^6 . What is their embedding class?

Happy Birthday Jurek!

・ロト ・回ト ・ヨト ・ヨト 三日