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MANIFOLDS THROUGHOUT THE CENTURIES

@ 19th century. Surfaces

@ 20th century. Atlases

@ The Whitney embedding theorem: any n—dimensional manifold can
be embedded in RY as a surface, where N is at most 2n.
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ISOMETRIC EMBEDDINGS

e A (pseudo) Riemannian curved metric g on M is induced from a flat
metric n on RY:

LM =RY gV, V) = n(e(V), (V).
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LM =RY gV, V) = n(e(V), (V).
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ISOMETRIC EMBEDDINGS

e A (pseudo) Riemannian curved metric g on M is induced from a flat
metric n on RY:
c:M =R, g(VoV) = (V) w(V))

o Folk saying: any surface can be localy isometrically embeded in R3.
e Improved folk saying: The Cartan—Janet theorem (local, real
analytic). N <n(n+1)/2.
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ISOMETRIC EMBEDDINGS

e A (pseudo) Riemannian curved metric g on M is induced from a flat
metric n on RY:

LM =R gV, V) = (e (V), 1(V)).

o Folk saying: any surface can be localy isometrically embeded in R3.

e Improved folk saying: The Cartan—Janet theorem (local, real
analytic). N <n(n+1)/2.

e Thomas (1925), Berger, Bryant, Griffiths (1983): Holonomy
obstructions and rigidity theorems if N < n(n+1)/2.
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e A (pseudo) Riemannian curved metric g on M is induced from a flat
metric n on RY:

LM =R gV, V) = (e (V), 1(V)).

o Folk saying: any surface can be localy isometrically embeded in R3.

e Improved folk saying: The Cartan—Janet theorem (local, real
analytic). N <n(n+1)/2.

e Thomas (1925), Berger, Bryant, Griffiths (1983): Holonomy
obstructions and rigidity theorems if N < n(n+1)/2.

o The Nash—Clarke global embedding theorems (C® embeddings)

N < n(2n®+37)/6 +5n%/2+3 if g is Lorentzian.
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ISOMETRIC EMBEDDINGS

e A (pseudo) Riemannian curved metric g on M is induced from a flat
metric n on RY:

LM =R gV, V) = (e (V), 1(V)).

o Folk saying: any surface can be localy isometrically embeded in R3.

e Improved folk saying: The Cartan—Janet theorem (local, real
analytic). N <n(n+1)/2.

e Thomas (1925), Berger, Bryant, Griffiths (1983): Holonomy
obstructions and rigidity theorems if N < n(n+1)/2.

o The Nash—Clarke global embedding theorems (C® embeddings)

N < n(2n®+37)/6 +5n%/2+3 if g is Lorentzian.

e Embedding class = the smallest integer N — n
@ The Schwarzchild metric: embedding class 2 (local - Kasner (1921),
global - Fronsdal (1959)).
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ISOMETRIC EMBEDDINGS

e A (pseudo) Riemannian curved metric g on M is induced from a flat
metric n on RY:

LM =R gV, V) = (e (V), 1(V)).

o Folk saying: any surface can be localy isometrically embeded in R3.

e Improved folk saying: The Cartan—Janet theorem (local, real
analytic). N <n(n+1)/2.

e Thomas (1925), Berger, Bryant, Griffiths (1983): Holonomy
obstructions and rigidity theorems if N < n(n+1)/2.

o The Nash—Clarke global embedding theorems (C® embeddings)

N < n(2n®+37)/6 +5n%/2+3 if g is Lorentzian.

e Embedding class = the smallest integer N — n
@ The Schwarzchild metric: embedding class 2 (local - Kasner (1921),
global - Fronsdal (1959)).
@ Fubini-Study metric on CP?: embedding class still not known (neither
local not global!). At least 3, at most 4.
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CONFORMAL ISOMETRIC EMBEDDINGS

o An immersion ¢ : (M, g) — RY such that ¢*(n) = Q2g for some
Q: M — R*, and (M) C RY is diffeomorphic to M.
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CONFORMAL ISOMETRIC EMBEDDINGS

o An immersion ¢ : (M, g) — RY such that ¢*(n) = Q2g for some
Q: M — R*, and (M) C RY is diffeomorphic to M.

e The Jacobowitz—Moore thm (local, analytic): N <n(n+1)/2 — 1.
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CONFORMAL ISOMETRIC EMBEDDINGS

o An immersion ¢ : (M, g) — RY such that ¢*(n) = Q2g for some
Q: M — R*, and (M) C RY is diffeomorphic to M.

e The Jacobowitz—Moore thm (local, analytic): N <n(n+1)/2 — 1.

o Naive counting: N embedding functions X!, ..., X" of local
coordinates z', ..., z" such that g = gap(x)dz®da®.

0X* X"
Nop g ot = Labr B =1, N, ab=1....mn

n(n +1)/2 PDEs for (N + 1) unknown functions (X, ) of x.
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o An immersion ¢ : (M, g) — RY such that ¢*(n) = Q2g for some
Q: M — R*, and (M) C RY is diffeomorphic to M.

e The Jacobowitz—Moore thm (local, analytic): N <n(n+1)/2 — 1.

o Naive counting: N embedding functions X!, ..., X" of local
coordinates z', ..., z" such that g = gap(x)dz®da®.

0X* X"
Nop g ot = Labr B =1, N, ab=1....mn

n(n +1)/2 PDEs for (N + 1) unknown functions (X, ) of x.
e This talk:
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CONFORMAL ISOMETRIC EMBEDDINGS

o An immersion ¢ : (M, g) — RY such that ¢*(n) = Q2g for some
Q: M — R*, and (M) C RY is diffeomorphic to M.

e The Jacobowitz—Moore thm (local, analytic): N <n(n+1)/2 — 1.

o Naive counting: N embedding functions X!, ..., X" of local
coordinates z', ..., z" such that g = gap(x)dz®da®.

X 0XP
Nop g ot = Labr B =1, N, ab=1....mn
n(n +1)/2 PDEs for (N + 1) unknown functions (X, ) of x.

e This talk:
@ Global conformal embedding of the Schwarzchild metric.
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CONFORMAL ISOMETRIC EMBEDDINGS

o An immersion ¢ : (M, g) — RY such that ¢*(n) = Q2g for some
Q: M — R*, and (M) C RY is diffeomorphic to M.
e The Jacobowitz—Moore thm (local, analytic): N <n(n+1)/2 — 1.

o Naive counting: N embedding functions X!, ..., X" of local
coordinates z', ..., z" such that g = gap(x)dz®da®.

0X* X"
Nop g ot = Labr B =1, N, ab=1....mn

n(n +1)/2 PDEs for (N + 1) unknown functions (X, ) of x.
e This talk:

@ Global conformal embedding of the Schwarzchild metric.
@ Obstructions to conformal embeddings of class 1
© Hawking and Unruh temperatures.
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CLASS 1 CONFORMAL EMBEDDINGS

e Given an Einstein Lorentzian four-manifold (M, g), seek an isometric
embedding of § = Q2¢g into R?, with second fundamental form

. 1.
Koy = 0qp + ZKgab
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CLASS 1 CONFORMAL EMBEDDINGS

e Given an Einstein Lorentzian four-manifold (M, g), seek an isometric
embedding of § = Q2¢g into R?, with second fundamental form

. 1.
Koy = 0qp + ZKgab

@ Conformal rescallings and spinors: szlbc =C% G =Qow

abce?

Cabed = YABCDEA' B'€C' D' + YA/ B'C' D' EABECD-

Dunasskl (DAMTP, CAMBRIDGE) CONFORMAL EMBEDDINGS ‘WARSZAWA, SEPTEMBER 2019



CLASS 1 CONFORMAL EMBEDDINGS

e Given an Einstein Lorentzian four-manifold (M, g), seek an isometric
embedding of § = Q2¢g into R?, with second fundamental form

. 1.
Koy = 0qp + ZKgab

: . . Ad o od s
e Conformal rescallings and spinors: C¢, . = C; ., Gap = Qogp

Cabed = YABCDEA' B'€C' D' + YA/ B'C' D' EABECD-

@ Theorem 1. The necessary and sufficient conditions for the exitence
of a local conformal embedding of class 1, with the trace—free part of

~

K given by Qo are

VA’(AUBC)E?I =0, O'(ABC b ocpyorp = F2%apep  (%)-

Given a solution to (%), there exists a 6D space of pairs (£, K).
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CLASS 1 CONFORMAL EMBEDDINGS

e Given an Einstein Lorentzian four-manifold (M, g), seek an isometric
embedding of § = Q2¢g into R?, with second fundamental form

. 1.
Koy = 0qp + ZKgab

: . . Ad o od s
e Conformal rescallings and spinors: C¢, . = C; ., Gap = Qogp

Cabed = YABCDEA' B'€C' D' + YA/ B'C' D' EABECD-

@ Theorem 1. The necessary and sufficient conditions for the exitence
of a local conformal embedding of class 1, with the trace—free part of

~

K given by Qo are

!

VA'(AUBC)E?I =0, O'(ABC b ocpyorp = F2%apep  (%)-

Given a solution to (%), there exists a 6D space of pairs (£, K).

@ Theorem 2. A local conformal embedding ¢ of Theorem 1, such that
rank(K,p) is maximal at some p € M, is rigid in a neighbourhood of
p up to conformal transformations of R™*, r + s = 5.
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Class. Quantum Grav. 8 (1991) L11-L17. Printed in the UK

LETTER TO THE EDITOR

Twistor equation in a curved spacetime

Jerzy Lewandowski
Institute of Theoretical Physics, Warsaw University, 00-681 Warsaw, Hoza 69, Poland

Received 29 August 1990, in final form 25 October 1990

Abstract. The twistor equation is studied in a four-real-dimensional spacetime. All the
metric tensors which locally admit a solution are found. They either belong to the Fefferman
class or are given by the Trautman-Kerr-Schild anzatz by using a non-twisting null
conformal Killing vector field in the Minkowski spacetime. The corresponding solutions
are derived.
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LOCAL CURVATURE OBSTRUCTIONS

o Algebraic invariants of the Weyl tensor

ABCD D.. EF., AB
I = Yapcpt PP, T = ap“Phep®Fhpr?.

Algebraically special J? — 613 = 0. Type 3, or type N: I = J = 0.
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LOCAL CURVATURE OBSTRUCTIONS

o Algebraic invariants of the Weyl tensor

ABCD D.. EF., AB
I = Yapcpt PP, T = ap“Phep®Fhpr?.

Algebraically special J? — 613 = 0. Type 3, or type N: I = J = 0.

@ Proposition 1. Reality of I and J is necessary for existence of a class
one conformal embedding.

@ Corollary: the Kerr metric does not admit a class 1 conf. embedding.
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o Algebraic invariants of the Weyl tensor

ABCD D.. EF., AB
I = Yapcpt PP, T = ap“Phep®Fhpr?.

Algebraically special J? — 613 = 0. Type 3, or type N: I = J = 0.

@ Proposition 1. Reality of I and J is necessary for existence of a class
one conformal embedding.

@ Corollary: the Kerr metric does not admit a class 1 conf. embedding.

@ Riemannian, or neutral signature: self—dual, and anti—self—dual Weyl
spinors C’ and C' are independent.
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LOCAL CURVATURE OBSTRUCTIONS

o Algebraic invariants of the Weyl tensor

ABCD D.. EF., AB
PABEL T = hap“PpopPE P,

Algebraically special J? — 613 = 0. Type 3, or type N: I = J = 0.

@ Proposition 1. Reality of I and J is necessary for existence of a class
one conformal embedding.

@ Corollary: the Kerr metric does not admit a class 1 conf. embedding.

@ Riemannian, or neutral signature: self—dual, and anti—self—dual Weyl
spinors C’ and C' are independent.

e Proposition 2. The conditions

I=1, J=J

I =vYapco

are necessary for existence of a class one conformal embedding.
e Corollary: A Riemannian manifold with self-dual Weyl tensor admits
a class one conformal embedding iff it is conformally flat.
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LOCAL CURVATURE OBSTRUCTIONS

o Algebraic invariants of the Weyl tensor

ABCD D.. EF., AB
PABEL T = hap“PpopPE P,

Algebraically special J? — 613 = 0. Type 3, or type N: I = J = 0.

@ Proposition 1. Reality of I and J is necessary for existence of a class
one conformal embedding.

@ Corollary: the Kerr metric does not admit a class 1 conf. embedding.

@ Riemannian, or neutral signature: self—dual, and anti—self—dual Weyl
spinors C’ and C' are independent.

e Proposition 2. The conditions

I=1, J=J

I =vYapco

are necessary for existence of a class one conformal embedding.

e Corollary: A Riemannian manifold with self-dual Weyl tensor admits
a class one conformal embedding iff it is conformally flat.

e The conformal embedding class of CP? is therefore at least two. It is
known to be at most three. What is it?
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SPHERICALLY SYMMETRIC CONFORMAL EMBEDDING

o g=Vdt? — V=ldr? — r?(d6* + sin 02d$?), where V = V(r) has a
finite number of simple zeroes rg > 71 > r9... .
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SPHERICALLY SYMMETRIC CONFORMAL EMBEDDING

o g=Vdt? — V=ldr? — r?(d6* + sin 02d$?), where V = V(r) has a
finite number of simple zeroes rg > 71 > r9... .

o Theorem 3. If the conformal embedding + : M — R5 is global on at
least one sphere of symmetry, then
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SPHERICALLY SYMMETRIC CONFORMAL EMBEDDING

o g =Vdt? - V=tdr? — r3(d6? + sin ?d¢?), where V = V(r) has a
finite number of simple zeroes rg > 71 > r9... .
o Theorem 3. If the conformal embedding + : M — R5 is global on at
least one sphere of symmetry, then
@ o0y is spherically symmetric, and ¢ can be chosen to be spherically
symmetric.
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SPHERICALLY SYMMETRIC CONFORMAL EMBEDDING

o g =Vdt? - V=tdr? — r3(d6? + sin ?d¢?), where V = V(r) has a
finite number of simple zeroes rg > 71 > r9... .
o Theorem 3. If the conformal embedding + : M — R5 is global on at
least one sphere of symmetry, then
@ o0y is spherically symmetric, and ¢ can be chosen to be spherically
symmetric.
@ In the real analytic category the embedding depends on two arbitrary
functions of one variable.
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SPHERICALLY SYMMETRIC CONFORMAL EMBEDDING

o g =Vdt? - V=tdr? — r3(d6? + sin ?d¢?), where V = V(r) has a
finite number of simple zeroes rg > 71 > r9... .
o Theorem 3. If the conformal embedding + : M — R5 is global on at
least one sphere of symmetry, then
@ o0y is spherically symmetric, and ¢ can be chosen to be spherically
symmetric.
@ In the real analytic category the embedding depends on two arbitrary
functions of one variable.
© Proof: GHP formalism and harmonic analysis for part one.
Cauchy—Kowalewska for part two.
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SPHERICALLY SYMMETRIC CONFORMAL EMBEDDING

o g =Vdt? - V=tdr? — r3(d6? + sin ?d¢?), where V = V(r) has a
finite number of simple zeroes rg > 71 > r9... .
o Theorem 3. If the conformal embedding + : M — R5 is global on at
least one sphere of symmetry, then
@ o0y is spherically symmetric, and ¢ can be chosen to be spherically
symmetric.
@ In the real analytic category the embedding depends on two arbitrary
functions of one variable.
© Proof: GHP formalism and harmonic analysis for part one.
Cauchy—Kowalewska for part two.

@ An example of a regular embedding

0%g = dT? — dX? — dR? — R*(d#* + sin 6?dp?). Set Q = R/r.
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SPHERICALLY SYMMETRIC CONFORMAL EMBEDDING

o g =Vdt? - V=tdr? — r3(d6? + sin ?d¢?), where V = V(r) has a
finite number of simple zeroes rg > 71 > r9... .
o Theorem 3. If the conformal embedding + : M — R5 is global on at
least one sphere of symmetry, then
@ o0y is spherically symmetric, and ¢ can be chosen to be spherically
symmetric.
@ In the real analytic category the embedding depends on two arbitrary
functions of one variable.
© Proof: GHP formalism and harmonic analysis for part one.
Cauchy—Kowalewska for part two.

@ An example of a regular embedding
0%g = dT? — dX? — dR? — R*(d#* + sin 6?dp?). Set Q = R/r.
e Find an isometric embedding of »=2(V ~!dr? — Vdt?) in AdSs3

dR? + dX? — dT?
R2 '

Dunasskl (DAMTP, CAMBRIDGE) CONFORMAL EMBEDDINGS ‘WARSZAWA, SEPTEMBER 2019



GLOBAL CONFORMAL EMBEDDING OF SCHWARZCHILD

@ The unique static, spherically symmetric, global conformal embedding.
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GLOBAL CONFORMAL EMBEDDING OF SCHWARZCHILD

e The unique static, spherically symmetric, global conformal embedding.

e T = sinh (ta) T)\/ ), X = cosh (ta) h(r V'V (r), R = h(r), where

VoV = rV’ 22 _ — N2
— exp / 2V —rV') £ ar\/V(4V + 4a2r2 — 2V —7V") )dr).
2rV(a?r2 +V)

Dunasskl (DAMTP, CAMBRIDGE) CONFORMAL EMBEDDINGS



(GLOBAL CONFORMAL EMBEDDING OF SCHWARZCHILD

e The unique static, spherically symmetric, global conformal embedding.

e T = sinh (ta) T)\/ ), X = cosh (ta) h(r VV(r), R = h(r), where

VoV = rV’ 22 _ — N2
— exp / 2V —rV') £ ar\/V(4V + 4a2r2 — 2V —7V") )dr).
2rV(a?r2 +V)

@ Regularity atazeror =7 of V: a = :l:%V’|T:f (the surface gravity).
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(GLOBAL CONFORMAL EMBEDDING OF SCHWARZCHILD

e The unique static, spherically symmetric, global conformal embedding.

e T = sinh (ta) T)\/ ), X = cosh (ta) h(r VV(r), R = h(r), where

b / VRV —rV)+ ar\/V(4V + 4a?r? — (2V — TV’)Q)d )
- P 2rV(a®r2 4+ V) ")

@ Regularity atazeror =7 of V: a = :l:%V’|T:f (the surface gravity).
o lfVo1lasr— oo, then R~rand Q~1asr — .
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(GLOBAL CONFORMAL EMBEDDING OF SCHWARZCHILD

e The unique static, spherically symmetric, global conformal embedding.

e T = sinh (ta) T)\/ ), X = cosh (ta) h(r VV(r), R = h(r), where

VoV = rV’ 22 _ — N2
— exp / 2V —rV') £ ar\/V(4V + 4a2r2 — 2V —7V") )dr).
2rV(a?r2 +V)

@ Regularity atazeror =7 of V: a = :l:%V’|T:f (the surface gravity).
o lfVo1lasr— oo, then R~rand Q~1asr — .
o V=1-2m/r, R(r) = exp ([ £dr), where

= 48m> — 16m2r — r3/2\/r3 + 2mr2 + Am2r + 72m3,
qg = (32m3 — 16m?r — rg)r.
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NULL INFINITIES - WHAT HAPPENED TO SCRI?

o Theorem 4. Let (Z1)%" and (Z+)® be null infinities of the
compactified Schwarzschild M, and the compactified Minkowski RY
The conformal embedding extends to a map ¢ : M — R"'s t.
L((Z+)5M) = py where p_ € (Z_)° and py € (Z,)® are points with
coordinates (0, N C S3).

WL,

M, g)
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HAWKING TO UNRUH

@ The Hawking effect: a temperature measured by asymptotic observers
is Ty = k/2m, where

Vo(|K*) = —2kK,, and g(K,K)=0 isa Killing horizon.
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HAWKING TO UNRUH

@ The Hawking effect: a temperature measured by asymptotic observers
is Ty = k/2m, where

Vo(|K*) = —2kK,, and g(K,K)=0 isa Killing horizon.

@ The Unruh effect: an observer moving with constant acceleration « in
the Minkowski space measues a temperature Ty = a/27.
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HAWKING TO UNRUH

@ The Hawking effect: a temperature measured by asymptotic observers
is Ty = k/2m, where

Vo(|K*) = —2kK,, and g(K,K)=0 isa Killing horizon.

@ The Unruh effect: an observer moving with constant acceleration « in
the Minkowski space measues a temperature Ty = a/27.

@ Deser and Levin (1999): The Hawking temperature in (M, g) equals
the Unruh temperature in an isometric embedding extending through
the Killing horizon.
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HAWKING TO UNRUH

@ The Hawking effect: a temperature measured by asymptotic observers
is Ty = k/2m, where

Vo(|K*) = —2kK,, and g(K,K)=0 isa Killing horizon.

@ The Unruh effect: an observer moving with constant acceleration « in
the Minkowski space measues a temperature Ty = a/27.
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© The surface gravity is conformally invariant as long as €2 and df) are
regular on the horizon, €2 is static, and 2 — 1 when r — oc.
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HAWKING TO UNRUH

@ The Hawking effect: a temperature measured by asymptotic observers
is Ty = k/2m, where

Vo(|K*) = —2kK,, and g(K,K)=0 isa Killing horizon.

@ The Unruh effect: an observer moving with constant acceleration « in
the Minkowski space measues a temperature Ty = a/27.

@ Deser and Levin (1999): The Hawking temperature in (M, g) equals
the Unruh temperature in an isometric embedding extending through
the Killing horizon.

@ Holds for the conformal isometric embedding of Schwarzchild in R%1:

@ (M, g) not Einstein, but Hawking effect is kinematical.

© The surface gravity is conformally invariant as long as €2 and df) are
regular on the horizon, €2 is static, and 2 — 1 when r — oc.

@ A trajectory of K = /0t in M lifts to a hyperbola in R*!

Xi® - Xy’ =

16m2h(r)? 2
M(l _ ﬂ) =a~2, where r fixed.
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HAWKING TO UNRUH

@ The Hawking effect: a temperature measured by asymptotic observers
is Ty = k/2m, where

Vo(|K*) = —2kK,, and g(K,K)=0 isa Killing horizon.

@ The Unruh effect: an observer moving with constant acceleration « in
the Minkowski space measues a temperature Ty = a/27.

@ Deser and Levin (1999): The Hawking temperature in (M, g) equals
the Unruh temperature in an isometric embedding extending through
the Killing horizon.

@ Holds for the conformal isometric embedding of Schwarzchild in R%1:

@ (M, g) not Einstein, but Hawking effect is kinematical.
© The surface gravity is conformally invariant as long as €2 and df) are
regular on the horizon, €2 is static, and 2 — 1 when r — oc.
@ A trajectory of K = /0t in M lifts to a hyperbola in R*!
16m2h(r)?

X? - Xo® = .

2
(1 — —m> =a~2, where r fixed.
T

@ Use Tolman's law, take a limit » — oo.
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OPEN PROBLEMS

e Extend to higher—dimensional black—holes, and use to study the
causal properties of asymptoticaly flat space-times (Peter Cameron,
in progress).
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between 2 and n(n + 1)/2 — 1 (Cartan—Kahler theory, prolongations).
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e Embeddings (isometric, conformal) of gravitational instantons:
Eguchi—Hanson, self—dual Taub NUT can be explicitly isometrically
embedded in R®, and can not be isometrically embedded in RS, What
is their embedding class?
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e Extend to higher—dimensional black—holes, and use to study the
causal properties of asymptoticaly flat space-times (Peter Cameron,
in progress).

@ Develop the rigidity theory of conformal embeddings of classes
between 2 and n(n + 1)/2 — 1 (Cartan—Kahler theory, prolongations).

e Find a global conformal embedding of extreme Reissner—Nordstrom.

o Find (or rule out!) a conformal isometric embedding of CP? in RS,

e Embeddings (isometric, conformal) of gravitational instantons:
Eguchi—Hanson, self—dual Taub NUT can be explicitly isometrically
embedded in R®, and can not be isometrically embedded in RS, What
is their embedding class?

Happy Birthday Jurek!
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