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Manifolds throughout the centuries

19th century. Surfaces

20th century. Atlases

The Whitney embedding theorem: any n–dimensional manifold can
be embedded in RN as a surface, where N is at most 2n.
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Isometric embeddings

A (pseudo) Riemannian curved metric g on M is induced from a flat
metric η on RN :

ι : M → RN , g(V, V ) = ι∗η(ι∗(V ), ι∗(V )).

Folk saying: any surface can be localy isometrically embeded in R3.

Improved folk saying: The Cartan–Janet theorem (local, real
analytic). N ≤ n(n+ 1)/2.

Thomas (1925), Berger, Bryant, Griffiths (1983): Holonomy
obstructions and rigidity theorems if N < n(n+ 1)/2.

The Nash–Clarke global embedding theorems (C3 embeddings)

N ≤ n(2n2 + 37)/6 + 5n2/2 + 3 if g is Lorentzian.

Embedding class = the smallest integer N − n

1 The Schwarzchild metric: embedding class 2 (local - Kasner (1921),
global - Fronsdal (1959)).

2 Fubini–Study metric on CP2: embedding class still not known (neither
local not global!). At least 3, at most 4.
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Conformal isometric embeddings

An immersion ι : (M, g)→ RN such that ι∗(η) = Ω2g for some
Ω : M → R+, and ι(M) ⊂ RN is diffeomorphic to M .

The Jacobowitz–Moore thm (local, analytic): N ≤ n(n+ 1)/2− 1.

Naive counting: N embedding functions X1, . . . , XN of local
coordinates x1, . . . , xn such that g = gab(x)dxadxb.

ηαβ
∂Xα

∂xa
∂Xβ

∂xb
= Ω2gab, α, β = 1, . . . , N, a, b = 1, . . . , n.

n(n+ 1)/2 PDEs for (N + 1) unknown functions (Xα,Ω) of xa.

This talk:

1 Global conformal embedding of the Schwarzchild metric.
2 Obstructions to conformal embeddings of class 1
3 Hawking and Unruh temperatures.
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Class 1 conformal embeddings

Given an Einstein Lorentzian four-manifold (M, g), seek an isometric
embedding of ĝ = Ω2g into R5, with second fundamental form

K̂ab = σ̂ab +
1

4
K̂ĝab

Conformal rescallings and spinors: Ĉdabc = Cdabc, σ̂ab = Ωσab

Cabcd = ψABCDεA′B′εC′D′ + ψA′B′C′D′εABεCD.

Theorem 1. The necessary and sufficient conditions for the exitence
of a local conformal embedding of class 1, with the trace–free part of
K̂ab given by Ωσab are

∇A′(Aσ
A′

BC)B′ = 0, σ C′D′

(AB σCD)C′D′ = ±2ψABCD (∗).

Given a solution to (∗), there exists a 6D space of pairs (Ω, K̂).

Theorem 2. A local conformal embedding ι of Theorem 1, such that
rank(Kab) is maximal at some p ∈M , is rigid in a neighbourhood of
p up to conformal transformations of Rr,s, r + s = 5.
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Local curvature obstructions

Algebraic invariants of the Weyl tensor

I = ψABCDψ
ABCD, J = ψAB

CDψCD
EFψEF

AB.

Algebraically special J2 − 6I3 = 0. Type 3, or type N: I = J = 0.

Proposition 1. Reality of I and J is necessary for existence of a class
one conformal embedding.
Corollary: the Kerr metric does not admit a class 1 conf. embedding.
Riemannian, or neutral signature: self–dual, and anti–self–dual Weyl
spinors C ′ and C are independent.
Proposition 2. The conditions

I = I ′, J = J ′

are necessary for existence of a class one conformal embedding.
Corollary: A Riemannian manifold with self–dual Weyl tensor admits
a class one conformal embedding iff it is conformally flat.
The conformal embedding class of CP2 is therefore at least two. It is
known to be at most three. What is it?
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Spherically symmetric conformal embedding

g = V dt2 − V −1dr2 − r2(dθ2 + sin θ2dφ2), where V = V (r) has a
finite number of simple zeroes r0 > r1 > r2 . . . .

Theorem 3. If the conformal embedding ι : M → R5 is global on at
least one sphere of symmetry, then

1 σab is spherically symmetric, and ι can be chosen to be spherically
symmetric.

2 In the real analytic category the embedding depends on two arbitrary
functions of one variable.

3 Proof: GHP formalism and harmonic analysis for part one.
Cauchy–Kowalewska for part two.

An example of a regular embedding

Ω2g = dT 2 − dX2 − dR2 −R2(dθ2 + sin θ2dφ2).

Set Ω = R/r.

Find an isometric embedding of r−2(V −1dr2 − V dt2) in AdS3

dR2 + dX2 − dT 2

R2
.
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Global conformal embedding of Schwarzchild

The unique static, spherically symmetric, global conformal embedding.

T = sinh (ta)h(r)
ar

√
V (r), X = cosh (ta)h(r)

ar

√
V (r), R = h(r), where

h = exp
(∫ V (2V − rV ′)± ar

√
V (4V + 4a2r2 − (2V − rV ′)2)

2rV (a2r2 + V )
dr
)
.

Regularity at a zero r = r̄ of V : a = ±1
2V
′|r=r̄ (the surface gravity).

If V → 1 as r →∞, then R ∼ r and Ω ∼ 1 as r →∞.

V = 1− 2m/r, R(r) = exp (
∫ p
qdr), where

p = 48m3 − 16m2r − r3/2
√
r3 + 2mr2 + 4m2r + 72m3,

q = (32m3 − 16m2r − r3)r.
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Null infinities - what happened to Scri?

Theorem 4. Let (I±)Schw and (I±)5 be null infinities of the

compactified Schwarzschild M , and the compactified Minkowski R4,1
.

The conformal embedding extends to a map ι : M → R4,1
s. t.

ι((I±)Schw) = p± where p− ∈ (I−)5 and p+ ∈ (I+)5 are points with
coordinates (0, N ⊂ S3).
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Hawking to Unruh

The Hawking effect: a temperature measured by asymptotic observers
is TH = κ/2π, where

∇a(|K|2) = −2κKa, and g(K,K) = 0 is a Killing horizon.

The Unruh effect: an observer moving with constant acceleration α in
the Minkowski space measues a temperature TU = α/2π.
Deser and Levin (1999): The Hawking temperature in (M, g) equals
the Unruh temperature in an isometric embedding extending through
the Killing horizon.
Holds for the conformal isometric embedding of Schwarzchild in R4,1:

1 (M, ĝ) not Einstein, but Hawking effect is kinematical.
2 The surface gravity is conformally invariant as long as Ω and dΩ are

regular on the horizon, Ω is static, and Ω→ 1 when r →∞.
3 A trajectory of K = ∂/∂t in M lifts to a hyperbola in R4,1

X1
2 −X0

2 =
16m2h(r)2

r2

(
1− 2m

r

)
≡ α−2, where r fixed.

4 Use Tolman’s law, take a limit r →∞.
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Open problems

Extend to higher–dimensional black–holes, and use to study the
causal properties of asymptoticaly flat space–times (Peter Cameron,
in progress).

Develop the rigidity theory of conformal embeddings of classes
between 2 and n(n+ 1)/2− 1 (Cartan–Kähler theory, prolongations).

Find a global conformal embedding of extreme Reissner–Nordström.

Find (or rule out!) a conformal isometric embedding of CP2 in R6.

Embeddings (isometric, conformal) of gravitational instantons:
Eguchi–Hanson, self–dual Taub NUT can be explicitly isometrically
embedded in R8, and can not be isometrically embedded in R6. What
is their embedding class?

Happy Birthday Jurek!
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