Conformally isometric embeddings and Hawking temperature

Maciej Dunajski

Clare College
and
Department of Applied Mathematics and Theoretical Physics
University of Cambridge.

19th century. Surfaces
Manifolds throughout the centuries

- 19th century. Surfaces

- 20th century. Atlases
Manifolds throughout the centuries

- 19th century. Surfaces

- 20th century. Atlases

- The Whitney embedding theorem: any n–dimensional manifold can be embedded in \mathbb{R}^N as a surface, where N is at most $2n$.
A (pseudo) Riemannian curved metric g on M is induced from a flat metric η on \mathbb{R}^N:

$$\iota : M \rightarrow \mathbb{R}^N, \quad g(V, V) = \iota^* \eta(\iota_*(V), \iota_*(V)).$$
A (pseudo) Riemannian curved metric g on M is induced from a flat metric η on \mathbb{R}^N:

$$\iota : M \rightarrow \mathbb{R}^N, \quad g(V, V) = \iota^* \eta(\iota_*(V), \iota_*(V)).$$

Folk saying: any surface can be locally isometrically embedded in \mathbb{R}^3.

Improved folk saying: The Cartan–Janet theorem (local, real analytic).

Thomas (1925), Berger, Bryant, Griffiths (1983): Holonomy obstructions and rigidity theorems if $N < n(n + 1)/2$.

The Nash–Clarke global embedding theorems (C^3 embeddings) $N \leq n(2n^2 + 37)/6 + 5n^2/2 + 3$ if g is Lorentzian.

Embedding class = the smallest integer $N - n$.

The Schwarzschild metric: embedding class 2 (local - Kasner (1921), global - Fronsdal (1959)).

Fubini–Study metric on $\mathbb{C}P^2$: embedding class still not known (neither local nor global!). At least 3, at most 4.
Isometric embeddings

- A (pseudo) Riemannian curved metric g on M is induced from a flat metric η on \mathbb{R}^N:
 $$\iota : M \to \mathbb{R}^N, \quad g(V, V) = \iota^*\eta(\iota_*(V), \iota_*(V)).$$

- Folk saying: any surface can be locally isometrically embedded in \mathbb{R}^3.
- Improved folk saying: The Cartan–Janet theorem (local, real analytic). $N \leq n(n + 1)/2$.
A (pseudo) Riemannian curved metric g on M is induced from a flat metric η on \mathbb{R}^N:

$$\iota : M \rightarrow \mathbb{R}^N, \quad g(V, V) = \iota^* \eta(\iota_*(V), \iota_*(V)).$$

Folk saying: any surface can be locally isometrically embedded in \mathbb{R}^3.

Improved folk saying: The Cartan–Janet theorem (local, real analytic). $N \leq n(n + 1)/2$.

Thomas (1925), Berger, Bryant, Griffiths (1983): Holonomy obstructions and rigidity theorems if $N < n(n + 1)/2$.
Isometric embeddings

- A (pseudo) Riemannian curved metric g on M is induced from a flat metric η on \mathbb{R}^N:

 $$\iota : M \to \mathbb{R}^N, \quad g(V, V) = \iota^* \eta(\iota_*(V), \iota_*(V)).$$

- Folk saying: any surface can be locally isometrically embedded in \mathbb{R}^3.
- Improved folk saying: The Cartan–Janet theorem (local, real analytic). $N \leq n(n + 1)/2$.
- Thomas (1925), Berger, Bryant, Griffiths (1983): Holonomy obstructions and rigidity theorems if $N < n(n + 1)/2$.
- The Nash–Clarke global embedding theorems (C^3 embeddings)

 $$N \leq n(2n^2 + 37)/6 + 5n^2/2 + 3 \quad \text{if } g \text{ is Lorentzian.}$$
Isometric embeddings

- A (pseudo) Riemannian curved metric g on M is induced from a flat metric η on \mathbb{R}^N:
 \[
 \iota : M \rightarrow \mathbb{R}^N, \quad g(V, V) = \iota^* \eta(\iota_*(V), \iota_*(V)).
 \]

- Folk saying: any surface can be locally isometrically embedded in \mathbb{R}^3.
- Improved folk saying: The Cartan–Janet theorem (local, real analytic). $N \leq n(n + 1)/2$.
- Thomas (1925), Berger, Bryant, Griffiths (1983): Holonomy obstructions and rigidity theorems if $N < n(n + 1)/2$.
- The Nash–Clarke global embedding theorems (C^3 embeddings)
 \[
 N \leq n(2n^2 + 37)/6 + 5n^2/2 + 3 \quad \text{if } g \text{ is Lorentzian.}
 \]
- Embedding class = the smallest integer $N - n$
Isometric embeddings

- A (pseudo) Riemannian curved metric g on M is induced from a flat metric η on \mathbb{R}^N:
 \[\iota : M \to \mathbb{R}^N, \quad g(V, V) = \iota^* (\eta(\iota_*(V), \iota_*(V))). \]

- Folk saying: any surface can be locally isometrically embedded in \mathbb{R}^3.
- Improved folk saying: The Cartan–Janet theorem (local, real analytic). $N \leq n(n+1)/2$.
- Thomas (1925), Berger, Bryant, Griffiths (1983): Holonomy obstructions and rigidity theorems if $N < n(n+1)/2$.
- The Nash–Clarke global embedding theorems (C^3 embeddings)
 \[N \leq n(2n^2 + 37)/6 + 5n^2/2 + 3 \quad \text{if } g \text{ is Lorentzian.} \]
- Embedding class = the smallest integer $N - n$
 - The Schwarzschild metric: embedding class 2 (local - Kasner (1921), global - Fronsdal (1959)).
A (pseudo) Riemannian curved metric g on M is induced from a flat metric η on \mathbb{R}^N:

$$\iota : M \to \mathbb{R}^N, \quad g(V, V) = \iota^* \eta(\iota_*(V), \iota_*(V)).$$

Folk saying: any surface can be locally isometrically embedded in \mathbb{R}^3.

Improved folk saying: The Cartan–Janet theorem (local, real analytic). $N \leq n(n + 1)/2$.

Thomas (1925), Berger, Bryant, Griffiths (1983): Holonomy obstructions and rigidity theorems if $N < n(n + 1)/2$.

The Nash–Clarke global embedding theorems (C^3 embeddings)

$$N \leq n(2n^2 + 37)/6 + 5n^2/2 + 3 \quad \text{if } g \text{ is Lorentzian.}$$

Embedding class = the smallest integer $N - n$

1. The Schwarzschild metric: embedding class 2 (local - Kasner (1921), global - Fronsdal (1959)).
2. Fubini–Study metric on \mathbb{CP}^2: embedding class still not known (neither local not global!). At least 3, at most 4.
Conformal isometric embeddings

- An immersion $\iota : (M, g) \rightarrow \mathbb{R}^N$ such that $\iota^*(\eta) = \Omega^2 g$ for some $\Omega : M \rightarrow \mathbb{R}^+$, and $\iota(M) \subset \mathbb{R}^N$ is diffeomorphic to M.

- The Jacobowitz–Moore thm (local, analytic): $N \leq n\left(n + \frac{1}{2}\right) - 1$.

- Naive counting: N embedding functions $X_1, ..., X_N$ of local coordinates $x_1, ..., x_n$ such that $g = g_{ab}(x) dx_a dx_b$.

- $\eta_{\alpha\beta} \partial X_\alpha \partial x_a \partial X_\beta \partial x_b = \Omega^2 g_{ab}$, $\alpha, \beta = 1, ..., N$, $a, b = 1, ..., n$.

- PDEs for $(N + 1)$ unknown functions (X_α, Ω) of x_a.

- This talk:
 1. Global conformal embedding of the Schwarzchild metric.
 2. Obstructions to conformal embeddings of class 1
 3. Hawking and Unruh temperatures.
Conformal isometric embeddings

- An immersion \(\iota : (M, g) \to \mathbb{R}^N \) such that \(\iota^*(\eta) = \Omega^2 g \) for some \(\Omega : M \to \mathbb{R}^+ \), and \(\iota(M) \subset \mathbb{R}^N \) is diffeomorphic to \(M \).
- The Jacobowitz–Moore thm (local, analytic): \(N \leq n(n + 1)/2 - 1 \).
An immersion \(\iota : (M, g) \to \mathbb{R}^N \) such that \(\iota^*(\eta) = \Omega^2 g \) for some \(\Omega : M \to \mathbb{R}^+ \), and \(\iota(M) \subset \mathbb{R}^N \) is diffeomorphic to \(M \).

The Jacobowitz–Moore thm (local, analytic): \(N \leq n(n + 1)/2 - 1 \).

Naive counting: \(N \) embedding functions \(X^1, \ldots, X^N \) of local coordinates \(x^1, \ldots, x^n \) such that \(g = g_{ab}(x) dx^a dx^b \).

\[
\eta_{\alpha\beta} \frac{\partial X^\alpha}{\partial x^a} \frac{\partial X^\beta}{\partial x^b} = \Omega^2 g_{ab}, \quad \alpha, \beta = 1, \ldots, N, \quad a, b = 1, \ldots, n.
\]

\(n(n + 1)/2 \) PDEs for \((N + 1) \) unknown functions \((X^\alpha, \Omega) \) of \(x^a \).
An immersion $\iota : (M, g) \to \mathbb{R}^N$ such that $\iota^*(\eta) = \Omega^2 g$ for some $\Omega : M \to \mathbb{R}^+$, and $\iota(M) \subset \mathbb{R}^N$ is diffeomorphic to M.

The Jacobowitz–Moore thm (local, analytic): $N \leq n(n + 1)/2 - 1$.

Naive counting: N embedding functions X^1, \ldots, X^N of local coordinates x^1, \ldots, x^n such that $g = g_{ab}(x)dx^a dx^b$.

$$\eta_{\alpha\beta} \frac{\partial X^\alpha}{\partial x^a} \frac{\partial X^\beta}{\partial x^b} = \Omega^2 g_{ab}, \quad \alpha, \beta = 1, \ldots, N, \quad a, b = 1, \ldots, n.$$

$n(n + 1)/2$ PDEs for $(N + 1)$ unknown functions (X^α, Ω) of x^a.

This talk:
An immersion $\iota : (M, g) \to \mathbb{R}^N$ such that $\iota^* (\eta) = \Omega^2 g$ for some $\Omega : M \to \mathbb{R}^{+}$, and $\iota(M) \subset \mathbb{R}^N$ is diffeomorphic to M.

The Jacobowitz–Moore thm (local, analytic): $N \leq n(n + 1)/2 - 1$.

Naive counting: N embedding functions X^1, \ldots, X^N of local coordinates x^1, \ldots, x^n such that $g = g_{ab}(x) dx^a dx^b$.

$$\eta_{\alpha\beta} \frac{\partial X^\alpha}{\partial x^a} \frac{\partial X^\beta}{\partial x^b} = \Omega^2 g_{ab}, \quad \alpha, \beta = 1, \ldots, N, \quad a, b = 1, \ldots, n.$$

$n(n + 1)/2$ PDEs for $(N + 1)$ unknown functions (X^α, Ω) of x^a.

This talk:

1. Global conformal embedding of the Schwarzchild metric.
An immersion $\iota : (M, g) \to \mathbb{R}^N$ such that $\iota^*(\eta) = \Omega^2 g$ for some $\Omega : M \to \mathbb{R}^+$, and $\iota(M) \subset \mathbb{R}^N$ is diffeomorphic to M.

The Jacobowitz–Moore thm (local, analytic): $N \leq n(n + 1)/2 - 1$.

Naive counting: N embedding functions X^1, \ldots, X^N of local coordinates x^1, \ldots, x^n such that $g = g_{ab}(x)dx^a dx^b$.

$$\eta_{\alpha\beta} \frac{\partial X^\alpha}{\partial x^a} \frac{\partial X^\beta}{\partial x^b} = \Omega^2 g_{ab}, \quad \alpha, \beta = 1, \ldots, N, \quad a, b = 1, \ldots, n.$$

$n(n + 1)/2$ PDEs for $(N + 1)$ unknown functions (X^α, Ω) of x^a.

This talk:

1. Global conformal embedding of the Schwarzchild metric.
2. Obstructions to conformal embeddings of class 1
Conformal isometric embeddings

- An immersion \(\iota : (M, g) \to \mathbb{R}^N \) such that \(\iota^*(\eta) = \Omega^2 g \) for some \(\Omega : M \to \mathbb{R}^+ \), and \(\iota(M) \subset \mathbb{R}^N \) is diffeomorphic to \(M \).

- The Jacobowitz–Moore thm (local, analytic): \(N \leq n(n+1)/2 - 1 \).

- Naive counting: \(N \) embedding functions \(X^1, \ldots, X^N \) of local coordinates \(x^1, \ldots, x^n \) such that \(g = g_{ab}(x)dx^a dx^b \).

\[
\eta_{\alpha\beta} \frac{\partial X^\alpha}{\partial x^a} \frac{\partial X^\beta}{\partial x^b} = \Omega^2 g_{ab}, \quad \alpha, \beta = 1, \ldots, N, \quad a, b = 1, \ldots, n.
\]

- \(n(n+1)/2 \) PDEs for \((N+1)\) unknown functions \((X^\alpha, \Omega)\) of \(x^a \).

- This talk:
 1. Global conformal embedding of the Schwarzschild metric.
 2. Obstructions to conformal embeddings of class 1
 3. Hawking and Unruh temperatures.
Given an Einstein Lorentzian four-manifold \((M, g)\), seek an isometric embedding of \(\hat{g} = \Omega^2 g\) into \(\mathbb{R}^5\), with second fundamental form
\[
\hat{K}_{ab} = \hat{\sigma}_{ab} + \frac{1}{4} \hat{K} \hat{g}_{ab}
\]
Class 1 conformal embeddings

- Given an Einstein Lorentzian four-manifold \((M, g)\), seek an isometric embedding of \(\hat{g} = \Omega^2 g\) into \(\mathbb{R}^5\), with second fundamental form

\[\hat{K}_{ab} = \hat{\sigma}_{ab} + \frac{1}{4} \hat{K} \hat{g}_{ab} \]

- Conformal rescalling and spinors:

\[\hat{C}^d_{abc} = C^d_{abc}, \quad \hat{\sigma}_{ab} = \Omega \sigma_{ab} \]

\[C_{abcd} = \psi_{ABCD} \epsilon_{A'B'C'D'} + \psi_{A'B'C'D'} \epsilon_{AB} \epsilon_{CD}. \]
Given an Einstein Lorentzian four-manifold \((M, g)\), seek an isometric embedding of \(\hat{g} = \Omega^2 g\) into \(\mathbb{R}^5\), with second fundamental form

\[
\hat{K}_{ab} = \hat{\sigma}_{ab} + \frac{1}{4} \hat{K} \hat{g}_{ab}
\]

Conformal rescallings and spinors:

\[
\hat{C}_{dabc} = C_{dabc}, \quad \hat{\sigma}_{ab} = \Omega \sigma_{ab}
\]

\[
C_{abcd} = \psi_{ABCD} \epsilon_{A'B'C'D'} + \psi_{A'B'C'D'} \epsilon_{AB} \epsilon_{CD}.
\]

Theorem 1. The necessary and sufficient conditions for the existence of a local conformal embedding of class 1, with the trace–free part of \(\hat{K}_{ab}\) given by \(\Omega \sigma_{ab}\) are

\[
\nabla_{A'} (A' \sigma_{BC})_{B'} = 0, \quad \sigma_{(AB} C' D') \sigma_{CD)C'D'} = \pm 2 \psi_{ABCD} \quad (*).
\]

Given a solution to \((*)\), there exists a 6D space of pairs \((\Omega, \hat{K})\).
Class 1 conformal embeddings

- Given an Einstein Lorentzian four-manifold \((M, g)\), seek an isometric embedding of \(\hat{g} = \Omega^2 g\) into \(\mathbb{R}^5\), with second fundamental form

\[
\hat{K}_{ab} = \hat{\sigma}_{ab} + \frac{1}{4} \hat{K} \hat{g}_{ab}
\]

- Conformal rescallings and spinors:

\[
\hat{C}_{\alpha\beta\gamma\delta} = C_{\alpha\beta\gamma\delta}, \quad \hat{\sigma}_{ab} = \Omega\sigma_{ab}
\]

\[
C_{abcd} = \psi_{ABCD} \epsilon_{A'B'C'D'} + \psi_{A'B'C'D'} \epsilon A B \epsilon C D.
\]

- **Theorem 1.** The necessary and sufficient conditions for the existence of a local conformal embedding of class 1, with the trace-free part of \(\hat{K}_{ab}\) given by \(\Omega\sigma_{ab}\) are

\[
\nabla_{A'}(A\sigma_{B'C})_{B'} = 0, \quad \sigma_{(AB}C'D')\sigma_{CD)C'D'} = \pm 2\psi_{ABCD}\quad (\ast).
\]

Given a solution to \((\ast)\), there exists a 6D space of pairs \((\Omega, \hat{K})\).

- **Theorem 2.** A local conformal embedding \(\iota\) of Theorem 1, such that \(\text{rank}(K_{ab})\) is maximal at some \(p \in M\), is rigid in a neighbourhood of \(p\) up to conformal transformations of \(\mathbb{R}^{r,s}, r + s = 5\).
LETTER TO THE EDITOR

Twistor equation in a curved spacetime

Jerzy Lewandowski
Institute of Theoretical Physics, Warsaw University, 00-681 Warsaw, Hoża 69, Poland

Received 29 August 1990, in final form 25 October 1990

Abstract. The twistor equation is studied in a four-real-dimensional spacetime. All the metric tensors which locally admit a solution are found. They either belong to the Fefferman class or are given by the Trautman-Kerr-Schild anzatz by using a non-twisting null conformal Killing vector field in the Minkowski spacetime. The corresponding solutions are derived.
Algebraic invariants of the Weyl tensor

\[I = \psi_{ABCD} \psi^{ABC}{}^D, \quad J = \psi_{AB}^{CD} \psi_{CD}^{EF} \psi_{EF}^{AB}. \]

Algebraically special \(J^2 - 6I^3 = 0 \). Type 3, or type N: \(I = J = 0 \).
Local curvature obstructions

Algebraic invariants of the Weyl tensor

\[I = \psi_{ABCD} \psi^{ABCD}, \quad J = \psi_{AB}^{CD} \psi_{CD}^{EF} \psi_{EF}^{AB}. \]

Algebraically special \(J^2 - 6I^3 = 0. \) Type 3, or type N: \(I = J = 0. \)

- **Proposition 1.** Reality of \(I \) and \(J \) is necessary for existence of a class one conformal embedding.
- **Corollary:** the Kerr metric does not admit a class 1 conf. embedding.
Algebraic invariants of the Weyl tensor

\[I = \psi_{ABCD}\psi^{ABCD}, \quad J = \psi_{AB}{}^{CD}\psi_{CD}{}^{EF}\psi_{EF}{}^{AB}. \]

Algebraically special \(J^2 - 6I^3 = 0 \). Type 3, or type N: \(I = J = 0 \).

Proposition 1. Reality of \(I \) and \(J \) is necessary for existence of a class one conformal embedding.

Corollary: the Kerr metric does not admit a class 1 conf. embedding.

Riemannian, or neutral signature: self–dual, and anti–self–dual Weyl spinors \(C' \) and \(C \) are independent.
Local curvature obstructions

- Algebraic invariants of the Weyl tensor

 \[I = \psi_{ABCD}\psi^{ABCD}, \quad J = \psi_{AB}^{\ CD}\psi_{CD}^{\ EF}\psi_{EF}^{\ AB}. \]

 Algebraically special \(J^2 - 6I^3 = 0 \). Type 3, or type N: \(I = J = 0 \).

- Proposition 1. Reality of \(I \) and \(J \) is necessary for existence of a class one conformal embedding.

- Corollary: the Kerr metric does not admit a class 1 conf. embedding.

- Riemannian, or neutral signature: self–dual, and anti–self–dual Weyl spinors \(C' \) and \(C \) are independent.

- Proposition 2. The conditions

 \[I = I', \quad J = J' \]

 are necessary for existence of a class one conformal embedding.

- Corollary: A Riemannian manifold with self–dual Weyl tensor admits a class one conformal embedding iff it is conformally flat.
Local curvature obstructions

- Algebraic invariants of the Weyl tensor
 \[I = \psi_{ABCD}\psi^{ABCD}, \quad J = \psi_{AB}^{CD}\psi_{CDE}^{F}\psi_{EF}^{AB}. \]

 Algebraically special \(J^2 - 6I^3 = 0 \). Type 3, or type N: \(I = J = 0 \).

- **Proposition 1.** Reality of \(I \) and \(J \) is necessary for existence of a class one conformal embedding.

- Corollary: the Kerr metric does not admit a class 1 conf. embedding.

- Riemannian, or neutral signature: self–dual, and anti–self–dual Weyl spinors \(C' \) and \(C \) are independent.

- **Proposition 2.** The conditions
 \[I = I', \quad J = J' \]

 are necessary for existence of a class one conformal embedding.

- Corollary: A Riemannian manifold with self–dual Weyl tensor admits a class one conformal embedding iff it is conformally flat.

- The conformal embedding class of \(\mathbb{C}P^2 \) is therefore at least two. It is known to be at most three. What is it?
Spherically symmetric conformal embedding

\[g = V dt^2 - V^{-1} dr^2 - r^2 (d\theta^2 + \sin \theta^2 d\phi^2), \]
where \(V = V(r) \) has a finite number of simple zeroes \(r_0 > r_1 > r_2 \ldots \).
Spherically symmetric conformal embedding

\[g = V dt^2 - V^{-1} dr^2 - r^2 (d\theta^2 + \sin \theta^2 d\phi^2), \]
where \(V = V(r) \) has a finite number of simple zeroes \(r_0 > r_1 > r_2 \ldots \).

Theorem 3. If the conformal embedding \(\iota : M \rightarrow \mathbb{R}^5 \) is global on at least one sphere of symmetry, then

- \(\sigma_{ab} \) is spherically symmetric, and
- \(\iota \) can be chosen to be spherically symmetric.

In the real analytic category the embedding depends on two arbitrary functions of one variable.

Proof: GHP formalism and harmonic analysis for part one.
Cauchy–Kowalewska for part two.

An example of a regular embedding

\[\Omega g = dT^2 - dX^2 - dR^2 - R^2 (d\theta^2 + \sin \theta^2 d\phi^2). \]

Set \(\Omega = \mathbb{R} / r. \)
Spherically symmetric conformal embedding

\[g = V dt^2 - V^{-1} dr^2 - r^2 (d\theta^2 + \sin^2\theta d\phi^2), \] where \(V = V(r) \) has a finite number of simple zeroes \(r_0 > r_1 > r_2 \ldots \).

Theorem 3. If the conformal embedding \(\iota : M \to \mathbb{R}^5 \) is global on at least one sphere of symmetry, then

\(\sigma_{ab} \) is spherically symmetric, and \(\iota \) can be chosen to be spherically symmetric.
Spherically symmetric conformal embedding

\[g = V dt^2 - V^{-1} dr^2 - r^2 (d\theta^2 + \sin \theta^2 d\phi^2), \text{ where } V = V(r) \] has a finite number of simple zeroes \(r_0 > r_1 > r_2 \ldots \).

Theorem 3. If the conformal embedding \(\iota : M \to \mathbb{R}^5 \) is global on at least one sphere of symmetry, then

1. \(\sigma_{ab} \) is spherically symmetric, and \(\iota \) can be chosen to be spherically symmetric.
2. In the real analytic category the embedding depends on two arbitrary functions of one variable.
Spherically symmetric conformal embedding

\[g = V dt^2 - V^{-1} dr^2 - r^2 (d\theta^2 + \sin^2 \theta d\phi^2), \]
where \(V = V(r) \) has a finite number of simple zeroes \(r_0 > r_1 > r_2 \ldots \).

Theorem 3. If the conformal embedding \(\iota : M \to \mathbb{R}^5 \) is global on at least one sphere of symmetry, then

1. \(\sigma_{ab} \) is spherically symmetric, and \(\iota \) can be chosen to be spherically symmetric.
2. In the real analytic category the embedding depends on two arbitrary functions of one variable.
Spherically symmetric conformal embedding

- \(g = V dt^2 - V^{-1} dr^2 - r^2(d\theta^2 + \sin \theta^2 d\phi^2) \), where \(V = V(r) \) has a finite number of simple zeroes \(r_0 > r_1 > r_2 \ldots \).

- **Theorem 3.** If the conformal embedding \(\iota : M \to \mathbb{R}^5 \) is global on at least one sphere of symmetry, then
 1. \(\sigma_{ab} \) is spherically symmetric, and \(\iota \) can be chosen to be spherically symmetric.
 2. In the real analytic category the embedding depends on two arbitrary functions of one variable.

- An example of a regular embedding
 \[\Omega^2 g = dT^2 - dX^2 - dR^2 - R^2(d\theta^2 + \sin \theta^2 d\phi^2) \]. Set \(\Omega = R/r \).
Spherically symmetric conformal embedding

\[g = V dt^2 - V^{-1} dr^2 - r^2(d\theta^2 + \sin^2 \theta d\phi^2), \] where \(V = V(r) \) has a finite number of simple zeroes \(r_0 > r_1 > r_2 \ldots \).

Theorem 3. If the conformal embedding \(\iota : M \rightarrow \mathbb{R}^5 \) is global on at least one sphere of symmetry, then

1. \(\sigma_{ab} \) is spherically symmetric, and \(\iota \) can be chosen to be spherically symmetric.
2. In the real analytic category the embedding depends on two arbitrary functions of one variable.

An example of a regular embedding

\[\Omega^2 g = dT^2 - dX^2 - dR^2 - R^2(d\theta^2 + \sin^2 \theta d\phi^2). \] Set \(\Omega = R/r \).

Find an isometric embedding of \(r^{-2}(V^{-1} dr^2 - V dt^2) \) in \(AdS_3 \)

\[\frac{dR^2 + dX^2 - dT^2}{R^2}. \]
The unique static, spherically symmetric, global conformal embedding.
The unique static, spherically symmetric, global conformal embedding.

\[T = \sinh (ta) \frac{h(r)}{ar} \sqrt{V(r)}, \quad X = \cosh (ta) \frac{h(r)}{ar} \sqrt{V(r)}, \quad R = h(r), \quad \text{where} \]

\[h = \exp \left(\int \frac{V(2V - rV') \pm ar \sqrt{V(4V + 4a^2r^2 - (2V - rV')^2)}}{2rV(a^2r^2 + V)} dr \right). \]
The unique static, spherically symmetric, global conformal embedding.

\[T = \sinh (ta) \frac{h(r)}{ar} \sqrt{V(r)}, \quad X = \cosh (ta) \frac{h(r)}{ar} \sqrt{V(r)}, \quad R = h(r), \]

where

\[h = \exp \left(\int \frac{V(2V - rV') + ar \sqrt{V(4V + 4a^2r^2 - (2V - rV')^2)}}{2rV(a^2r^2 + V)} dr \right). \]

Regularity at a zero \(r = \bar{r} \) of \(V \): \(a = \pm \frac{1}{2} V' |_{r=\bar{r}} \) (the surface gravity).
Global conformal embedding of Schwarzschild

- The unique static, spherically symmetric, global conformal embedding.
- \(T = \sinh (ta) \frac{h(r)}{ar} \sqrt{V(r)} \), \(X = \cosh (ta) \frac{h(r)}{ar} \sqrt{V(r)} \), \(R = h(r) \), where

\[
h = \exp \left(\int \frac{V(2V - rV') \pm ar \sqrt{V(4V + 4a^2r^2 - (2V - rV')^2)}}{2rV(a^2r^2 + V)} \, dr \right).
\]

- Regularity at a zero \(r = \bar{r} \) of \(V \): \(a = \pm \frac{1}{2} V'\big|_{r=\bar{r}} \) (the surface gravity).
- If \(V \to 1 \) as \(r \to \infty \), then \(R \sim r \) and \(\Omega \sim 1 \) as \(r \to \infty \).
The unique static, spherically symmetric, global conformal embedding.

\[T = \sinh (ta) \frac{h(r)}{ar} \sqrt{V(r)},
X = \cosh (ta) \frac{h(r)}{ar} \sqrt{V(r)},
R = h(r), \]

where

\[h = \exp \left(\int \frac{V(2V - rV') \pm ar \sqrt{V(4V + 4a^2r^2 - (2V - rV')^2)}}{2rV(a^2r^2 + V)} dr \right). \]

Regularity at a zero \(r = \bar{r} \) of \(V \): \(a = \pm \frac{1}{2} V' |_{r=\bar{r}} \) (the surface gravity).

If \(V \to 1 \) as \(r \to \infty \), then \(R \sim r \) and \(\Omega \sim 1 \) as \(r \to \infty \).

\(V = 1 - 2m/r,
R(r) = \exp (\int \frac{p}{q} dr), \)

where

\[p = 48m^3 - 16m^2r - r^{3/2} \sqrt{r^3 + 2mr^2 + 4m^2r + 72m^3}, \]
\[q = (32m^3 - 16m^2r - r^3)r. \]
Theorem 4. Let \((I_\pm)^{Schw}\) and \((I_\pm)^5\) be null infinities of the compactified Schwarzschild \(\overline{M}\), and the compactified Minkowski \(\overline{\mathbb{R}^{4,1}}\). The conformal embedding extends to a map \(\iota: \overline{M} \rightarrow \overline{\mathbb{R}^{4,1}}\) s. t. \(\iota((I_\pm)^{Schw}) = p_\pm\) where \(p_- \in (I_-)^5\) and \(p_+ \in (I_+)^5\) are points with coordinates \((0, N \subset S^3)\).
The Hawking effect: a temperature measured by asymptotic observers is $T_H = \kappa / 2\pi$, where

$$\nabla_a (|K|^2) = -2\kappa K_a,$$

and $g(K, K) = 0$ is a Killing horizon.
HAWKING TO UNRUH

- The Hawking effect: a temperature measured by asymptotic observers is $T_H = \kappa/2\pi$, where
 \[
 \nabla_a(|K|^2) = -2\kappa K_a, \quad \text{and} \quad g(K, K) = 0 \quad \text{is a Killing horizon}.
 \]
- The Unruh effect: an observer moving with constant acceleration α in the Minkowski space measures a temperature $T_U = \alpha/2\pi$.

Deser and Levin (1999): The Hawking temperature in (M, g) equals the Unruh temperature in an isometric embedding extending through the Killing horizon.

- The surface gravity is conformally invariant as long as Ω and $d\Omega$ are regular on the horizon, Ω is static, and $\Omega \to 1$ when $r \to \infty$.

- A trajectory of $K = \partial/\partial t$ in M lifts to a hyperbola in \mathbb{R}^4,
 \[
 X_1^2 - X_0^2 = 16 \mu^2 (r^2) - \frac{r^2}{1 - 2\mu r} \equiv \alpha - 2\mu r,
 \]
 where r fixed.

- Use Tolman's law, take a limit $r \to \infty$.

Dunajski (DAMTP, Cambridge)

Warszawa, September 2019 12 /
HAWKING TO UNRUH

- The Hawking effect: a temperature measured by asymptotic observers is \(T_H = \kappa / 2\pi \), where
 \[
 \nabla_a (|K|^2) = -2\kappa K_a, \quad \text{and} \quad g(K, K) = 0 \quad \text{is a Killing horizon}.
 \]

- The Unruh effect: an observer moving with constant acceleration \(\alpha \) in the Minkowski space measures a temperature \(T_U = \alpha / 2\pi \).

- Deser and Levin (1999): The Hawking temperature in \((M, g)\) equals the Unruh temperature in an isometric embedding extending through the Killing horizon.
Hawking to Unruh

- The Hawking effect: a temperature measured by asymptotic observers is $T_H = \kappa/2\pi$, where
 $$\nabla_a (|K|^2) = -2\kappa K_a, \quad \text{and} \quad g(K, K) = 0 \quad \text{is a Killing horizon.}$$

- The Unruh effect: an observer moving with constant acceleration α in the Minkowski space measures a temperature $T_U = \alpha/2\pi$.

- Deser and Levin (1999): The Hawking temperature in (M, g) equals the Unruh temperature in an isometric embedding extending through the Killing horizon.

- Holds for the conformal isometric embedding of Schwarzchild in $\mathbb{R}^{4,1}$:

 $$X_1^2 - X_0^2 = 16m^2h(r)^2 r^2 (1 - 2m/r) \equiv \alpha - 2m,$$
 where r fixed.

- Use Tolman's law, take a limit $r \to \infty$.

Dunajski (DAMTP, Cambridge)
The Hawking effect: a temperature measured by asymptotic observers is \(T_H = \frac{\kappa}{2\pi} \), where
\[
\nabla_a (|K|^2) = -2\kappa K_a, \quad \text{and} \quad g(K, K) = 0 \quad \text{is a Killing horizon.}
\]

The Unruh effect: an observer moving with constant acceleration \(\alpha \) in the Minkowski space measures a temperature \(T_U = \frac{\alpha}{2\pi} \).

Deser and Levin (1999): The Hawking temperature in \((M, g)\) equals the Unruh temperature in an isometric embedding extending through the Killing horizon.

Holds for the conformal isometric embedding of Schwarzschild in \(\mathbb{R}^{4,1} \):
1. \((M, \hat{g})\) not Einstein, but Hawking effect is kinematical.
Hawking to Unruh

- The Hawking effect: a temperature measured by asymptotic observers is \(T_H = \frac{\kappa}{2\pi} \), where

\[
\nabla_a (|K|^2) = -2\kappa K_a, \quad \text{and} \quad g(K, K) = 0 \quad \text{is a Killing horizon.}
\]

- The Unruh effect: an observer moving with constant acceleration \(\alpha \) in the Minkowski space measures a temperature \(T_U = \frac{\alpha}{2\pi} \).

- Deser and Levin (1999): The Hawking temperature in \((M, g)\) equals the Unruh temperature in an isometric embedding extending through the Killing horizon.

- Holds for the conformal isometric embedding of Schwarzschild in \(\mathbb{R}^{4,1} \):
 1. \((M, \hat{g})\) not Einstein, but Hawking effect is kinematical.
 2. The surface gravity is conformally invariant as long as \(\Omega \) and \(d\Omega \) are regular on the horizon, \(\Omega \) is static, and \(\Omega \to 1 \) when \(r \to \infty \).
The Hawking effect: a temperature measured by asymptotic observers is \(T_H = \frac{\kappa}{2\pi} \), where
\[
\nabla_a (|K|^2) = -2\kappa K_a, \quad \text{and} \quad g(K, K) = 0 \quad \text{is a Killing horizon}.
\]

The Unruh effect: an observer moving with constant acceleration \(\alpha \) in the Minkowski space measures a temperature \(T_U = \frac{\alpha}{2\pi} \).

Deser and Levin (1999): The Hawking temperature in \((M, g)\) equals the Unruh temperature in an isometric embedding extending through the Killing horizon.

Holds for the conformal isometric embedding of Schwarzschild in \(\mathbb{R}^{4,1} \):

1. \((M, \hat{g})\) not Einstein, but Hawking effect is kinematical.
2. The surface gravity is conformally invariant as long as \(\Omega \) and \(d\Omega \) are regular on the horizon, \(\Omega \) is static, and \(\Omega \to 1 \) when \(r \to \infty \).
3. A trajectory of \(K = \partial / \partial t \) in \(M \) lifts to a hyperbola in \(\mathbb{R}^{4,1} \)
\[
X_1^2 - X_0^2 = \frac{16m^2 h(r)^2}{r^2} \left(1 - \frac{2m}{r}\right) \equiv \alpha^{-2}, \quad \text{where} \ r \ \text{fixed}.
\]
Hawking to Unruh

- The Hawking effect: a temperature measured by asymptotic observers is \(T_H = \frac{\kappa}{2\pi} \), where
 \[
 \nabla_a(|K|^2) = -2\kappa K_a, \quad \text{and} \quad g(K, K) = 0 \quad \text{is a Killing horizon.}
 \]

- The Unruh effect: an observer moving with constant acceleration \(\alpha \) in the Minkowski space measures a temperature \(T_U = \frac{\alpha}{2\pi} \).

- Deser and Levin (1999): The Hawking temperature in \((M, g)\) equals the Unruh temperature in an isometric embedding extending through the Killing horizon.

- Holds for the conformal isometric embedding of Schwarzschild in \(\mathbb{R}^{4,1} \):
 1. \((M, \hat{g})\) not Einstein, but Hawking effect is kinematical.
 2. The surface gravity is conformally invariant as long as \(\Omega \) and \(d\Omega \) are regular on the horizon, \(\Omega \) is static, and \(\Omega \to 1 \) when \(r \to \infty \).
 3. A trajectory of \(K = \partial/\partial t \) in \(M \) lifts to a hyperbola in \(\mathbb{R}^{4,1} \)
 \[
 X_1^2 - X_0^2 = \frac{16m^2 h(r)^2}{r^2} \left(1 - \frac{2m}{r}\right) \equiv \alpha^{-2}, \quad \text{where } r \text{ fixed.}
 \]
 4. Use Tolman’s law, take a limit \(r \to \infty \).
Open problems

- Extend to higher-dimensional black-holes, and use to study the causal properties of asymptotically flat space-times (Peter Cameron, in progress).

- Develop the rigidity theory of conformal embeddings of classes between 2 and $\frac{n(n+1)}{2}−1$ (Cartan–Kähler theory, prolongations).

- Find a global conformal embedding of extreme Reissner–Nordström.

- Find (or rule out!) a conformal isometric embedding of \mathbb{CP}^2 in \mathbb{R}^6.

- Embeddings (isometric, conformal) of gravitational instantons: Eguchi–Hanson, self-dual Taub NUT can be explicitly isometrically embedded in \mathbb{R}^8, and can not be isometrically embedded in \mathbb{R}^6. What is their embedding class?

Happy Birthday Jurek!

Dunajski (DAMTP, Cambridge)

Warszawa, September 2019
Open problems

- Extend to higher-dimensional black-holes, and use to study the causal properties of asymptotically flat space-times (Peter Cameron, in progress).
- Develop the rigidity theory of conformal embeddings of classes between 2 and $n(n+1)/2 - 1$ (Cartan–Kähler theory, prolongations).
Open problems

- Extend to higher-dimensional black-holes, and use to study the causal properties of asymptoticaly flat space-times (Peter Cameron, in progress).
- Develop the rigidity theory of conformal embeddings of classes between 2 and $n(n + 1)/2 - 1$ (Cartan–Kähler theory, prolongations).
- Find a global conformal embedding of extreme Reissner–Nordström.

Happy Birthday Jurek!
Open problems

- Extend to higher-dimensional black-holes, and use to study the causal properties of asymptotically flat space-times (Peter Cameron, in progress).
- Develop the rigidity theory of conformal embeddings of classes between 2 and $n(n + 1)/2 − 1$ (Cartan–Kähler theory, prolongations).
- Find a global conformal embedding of extreme Reissner–Nordström.
- Find (or rule out!) a conformal isometric embedding of \mathbb{CP}^2 in \mathbb{R}^6.

Embeddings (isometric, conformal) of gravitational instantons: Eguchi–Hanson, self-dual Taub NUT can be explicitly isometrically embedded in \mathbb{R}^8, and can not be isometrically embedded in \mathbb{R}^6. What is their embedding class?

Happy Birthday Jurek!
Open problems

- Extend to higher-dimensional black-holes, and use to study the causal properties of asymptotically flat space-times (Peter Cameron, in progress).
- Develop the rigidity theory of conformal embeddings of classes between 2 and \(n(n+1)/2 - 1 \) (Cartan–Kähler theory, prolongations).
- Find a global conformal embedding of extreme Reissner–Nordström.
- Find (or rule out!) a conformal isometric embedding of \(\mathbb{CP}^2 \) in \(\mathbb{R}^6 \).
- Embeddings (isometric, conformal) of gravitational instantons: Eguchi–Hanson, self–dual Taub NUT can be explicitly isometrically embedded in \(\mathbb{R}^8 \), and cannot be isometrically embedded in \(\mathbb{R}^6 \). What is their embedding class?

Happy Birthday Jurek!
Open problems

- Extend to higher–dimensional black–holes, and use to study the causal properties of asymptoticaly flat space–times (Peter Cameron, in progress).
- Develop the rigidity theory of conformal embeddings of classes between 2 and $n(n + 1)/2 − 1$ (Cartan–Kähler theory, prolongations).
- Find a global conformal embedding of extreme Reissner–Nordström.
- Find (or rule out!) a conformal isometric embedding of $\mathbb{C}P^2$ in \mathbb{R}^6.
- Embeddings (isometric, conformal) of gravitational instantons: Eguchi–Hanson, self–dual Taub NUT can be explicitly isometrically embedded in \mathbb{R}^8, and can not be isometrically embedded in \mathbb{R}^6. What is their embedding class?

Happy Birthday Jurek!