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Isolated horizons,
near horizon geometries
and the Petrov type D equation

1, 2). Denis Dobkowski-Rytko, J. Lewandowski,
I. Pawtowski (2018);
3). JL, A. Szereszewski (2018);
4). DDR, W. Kaminski, JL, AS (2018);
5). DDR, JL, |. Racz (2019);
6). M. Kolanowski, JL, AS (2019).




Plan of the talk

1). Non-extremal Isolated Horizons stationary to the second order:
* type D equation
* solution to the type D equation on axisymmetric 2-sphere
section of the |H
e solution to the type D equation on genus>0 section of the IH
e solution to the type D equation on |IHs of the non-trivial

topology;
* bifurcated Petrov type D horizon

2). Extremal Isolated Horizons stationary to the second order and the NHG:
* Near Horizon Geometry equations in (n+2)-dim
e NHG in 4-dim:
e Solution to NHG for genus=0
e Solution to NHG for genus>0
e Spacetimes foliated by non-expanding surfaces of co-dimension 1
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Isolated Horizons (stationary to the 2nd order)

H - 3dim null surface in 4dim spacetime M

G +Agu =0
e, = 0

Rotation Potential:

V0 = w, P

Surface Gravity:

kb = w, 0°

Non-extremality condition:

Ltg,ul/ =0 / liﬁ # 0
[[’757 v,u] —
[:tR,ul/ozB — O
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The type D equation



The Weyl tensor in Newman-Penrose formalism

- Spacetime Weyl tensor in the null frame formalism may be
expressed by the following complex valued N-P

components:
P Vo = Cyi141, U, = Cyzqgr VYo = Cyio3,

W3 = C3432, Y4 = (3230
- Four components are constant along the null generators
otH: py,=o 1=01.23

- Stationarity to the second order: DU, = 0

- The components ¥, and ¥, vanish due to vanishing of
the expansion and shear of ¢ : Uy =y =0

: 1
\PQZ_%(K—I_ZQ)—I—%A ::\IeréA where QUAB:CZWAB
2



Possible Petrov types

The spacetime Weyl tensor at H Is determined by the
data

(S7 JAB, WA)

Theorem 1
The possible Petrov types of H are:
I, Il, D, lll, N, O
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Possible Petrov types

The spacetime Weyl tensor at H Is determined by the
data

(S7 JAB; (UA)
Theorem 1
The possible Petrov types of H are:
X1, D, M, M, O
A
Uy =0 < 0 & Kzg,deB:O
Wy # 0 = generically type I, unless...

DDR, Lewandowski, Pawtowski (2018)
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The Petrov type D equation

We use a null 2-frame

JAB = MaAMB +MAMB nap = t(mamp —mpma)

Theorem 2
At H the spacetime Weyl tensor is of the Petrov type D
iff the following two conditions are satisfied:

A

_ 1
TTLATTLBVAVB\PQ S = () The Petrov type D eq.

DDR, Lewandowski, Pawfowski (2018)
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Axisymmetric 2-sphere section of the IH

Consider a metric: gapdr*dz? = Q*(0)(d6* + sin? Odp?)

2 .
sinb
and transformation dz = « 73 do that yields:

gABdazAda:B = RQ(%dQL‘Q + PngOQ)

Regularity conditions: P|a;::1 = ( 8:1;]32\:,;::1 — F2

Type D equation reads: 02V, 5 _ 0

and its solution: (c12 4 c2) ™ = Uy = —§(K +4iQ) + = A



Axisymmetric solution to the Petrov type D equation

Theorem 3
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equation with (or without) cosmological constant defined on a
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Axisymmetric solution to the Petrov type D equation

Theorem 3
The family of axisymmetric solutions to the Petrov type D
equation with (or without) cosmological constant defined on a
topological sphere can be parametrized by two numbers (A,J):
the area and angular momentum, respectively. They can take

the following values:

127 A |ANA 127
for A>0:J € (—oo,oo) for A € (O’A) and |J| € [0’1677 1277_1> for A € (A,oo)

for A <0:J € (—oo,oo) and A € (O,oo)

[Lewandowski, Pawtowski (2003) for A =0



Embeddability of the axisymmetric solutions

Every solution defines a type D isolated horizon
whose Intrinsic geometry coincides with the intrinsic
geometry of a non-extremal Killing horizon contained
in one of the following spacetimes:

1). Kerr - (anti) de Sitter;



Embeddability of the axisymmetric solutions

Every solution defines a type D isolated horizon
whose Intrinsic geometry coincides with the intrinsic
geometry of a non-extremal Killing horizon contained
in one of the following spacetimes:

1). Kerr - (anti) de Sitter;

2). Schwarzschild - (anti) de Sitter;



Embeddability of the axisymmetric solutions

Every solution defines a type D isolated horizon
whose Intrinsic geometry coincides with the intrinsic
geometry of a non-extremal Killing horizon contained
in one of the following spacetimes:

1). Kerr - (anti) de Sitter;
2). Schwarzschild - (anti) de Sitter;
3). Near horizon limit spacetime near an extremal

horizon contained either in the K(a)dS or S(a)dS
spacetime.
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Petrov type D equation on S of genus >0

Consider the following metric tensor:

2
QABdeda?B = ﬁdzdi m*9, = PO,

1
N = iﬁdz/\dz

Petrov type D equation reads:

9, (PZ&g\If;%) — 0= P20,U, % = F(2)

Globally defined holomorphic vector field: F'(2)0.

F(z) = Fy = const for genus = 1;

F(z)=0 for genus > 1.
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It is straightforward to show that even for genus = 1:
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Solution to the Petrov type D equation on S of genus >0

It is straightforward to show that even for genus = 1:

FO/n:i/c?Z\If;%dz/\dZ:—i/d(\If;%dz> ~ 0
S S S

Theorem 4
Suppose S is a compact 2-surface genus > 0. The only solutions to
the Petrov type D equation with a cosmological constant A
are (g,w) such that:

A
dw =0 K:const#g

DDR, Kaminski, Lewandowski, Szereszewski (2018)



Solution to the type D equation
on IHs of the non-trivial topology



The type D equation for and non-trivial bundle
Now: / QQdArea = 2mkm =: 2mn # 0
IS

where: m € Z
H

|11
S

m characterizes U(7) bundle:

DDR, Lewandowski, Racz (2019)

10
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The type D equation for and non-trivial bundle

Now: / QQdArea = 2mkm =: 2mn # 0
S

where: m € Z
H

m characterizes U(7) bundle: L1l
S

We found all axisymmetric solutions which for every value of the
topological charge m set a 3-dim family that can be parametrized

by the area, surface gravity and a parameter corresponding to
rotation.

Embeddabilty???

DDR, Lewandowski, Racz (2019) 10



Axisymmetric solutions to the type D equation
on horizons of non-trivial bundle topology

Class 1 Class 2 Class 3
1 | 1
2 2 _ 2 _ =
i >0 i 20\’ i 2A’7—1#2A’




Bifurcated Petrov type D
horizon



Bifurcated Petrov type D horizon: data

/
H H

Racz
[ ewandowski
SzereszewskKi

11



Bifurcated Petrov type D horizon: equations

Petrov type D equations:

1
e for H: mAmPV 4V (¥ + —A)_%

= 0
0
A __B 11
e for H’: mem VAVB(\IJ+6A) 3 = ()
hold simultaneously on —> additional (axial) symmetry

Cole, Racz, Valiente Kroon 2018
[ ewandowski, Szereszewski 2018

12



Bifurcated Petrov type D horizon in conformally flat coordinates

gAdeAde = ﬁdzdi m29, = PO,
A 1 A _ 1 F(Z)
O=(PO-(V+)7%)=0 = (V)=
A1 A _(Z)
(P?0, (U + —=)73) = = i VT3 —
0. ( a(+6) ) =0 8(\If+6) D
A A F'(z) 7 ()
~ LogaB =
e [,q) dw = 0

13



Axial symmetry without the rigidity theorem

Theorem 6
Suppose (gAB, wA) defined on > satisfy the Petrov type D equation:

1
mAMBY AV 5 (T + 6A)—% =0
and the conjugate one:

1
mAmB\/A\/B(\I/ + EA)_% =0
Then there is a vector field ® on such that

Logap =0 Ledw =0

A,
®4 = Re/Im (dAreaABﬁA(\If — 6)_3>

Corollary: the axial symmetry for
14



Extremal Isolated horizons
stationary to the second order



Extremal Isolated Horizons to the 2nd order
in (n+2)-dim spacetime

H - (n+1)-dim null surface in (n+2)-dim spacetime M

1
(n+2)R'u,y . 5 (n+2)Rg'Lu/ _I_ Ag'uy — O

b __ b
g,ug,u — 0 Vag — wa€
Surface Gravity:
A
\ kb = w, 0°
t t
[
f
Etg,u,l/ —
[ﬁta vu] =0 £
L:tR,UJ/CEB — O

Rotation Potential:

15
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1
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Extremal Isolated Horizons to the 2nd order
in (n+2)-dim spacetime

H - (n+1)-dim null surface in (n+2)-dim spacetime M

1
(n+2)R'u,y - (n_l_z)Rg/u/ _I_ Ag,uy — O

2
Rotation Potential:
b b
L _ VU7 = wy,t
e, = 0 a ‘
Surface Gravity:
t 14 a
t , \ K- = wyl
Ly = e
r @L . 0 / £ Extremality condition:f‘.
Lt, Vil = ] e '
LiRyvap =0 aitpack|”
v|s = const
v:H —R:

f(?}) — Sa,b = — V4 VU 15



Near Horizon Geometry
equations in (n+2)-dim



Extremal Isolated Horizons to the 2nd order:
equations

1 1
(n)v(AwB) T WAWB — §(n>RAB T EAQAB =0

Hajicek 1970’s, Isenberg, Moncrief 1983,
Ashtekar, Beetle, Lewandowski 2001

Sap:cC — Sap — 288 Racy +2S“PRacep + 2w Sc.(ap) +3w(aS. 5y — 3w Sap.c

—2w(4Sp)c’” + 28c(awp)’” — 2w pSac —wawpS + wew Sap =0
R. :="R_ CLA = (V4 - S :=5-%

Kolanowski, Lewandowski, Szereszewski 2019

16



Extremal Isolated Horizons to the 2nd order:
equations

Sap:cC — Sap — 2S5 Racy +2S“PRacep + 2w Sc.(ap) +3w(aS.p) — 3w Sap;c

—2w(aSp)c’” +2Sc(awp)C — 2w BSac —wawpS +wcwCSap =0

Linear in Sap on the background of wa,gd4B that satisfy the
equation:

1 1
(n)V(ACUB) + WAWRB — §(n)RAB + EAQAB =0

Remark: This equation is exact. However since it is linear, It also
features in linear perturbations of Near Horizon Geometry

spacetimes. Lucietti, Li 2016

17



The Near Horizon Geometry spacetime
Given 71 dimensional manifold endowed with A B, WA such that

1 (n)

1
> Rap +—Agap =0
n

(n)v(AWB) + wAawp —

Defineon S X R x R

Gudxtdx” = gABdajAde—
) | , _
2du | dv — 2uw adx™ — 52)2 ((”)VAwA + 2wl + —A) du
n
Then (n—l—Z)GMV - AgW =0
and H = 5§ xR % {v — O} is an extremal Killing horizon.

K =v0, — ud,, L =0,

Pawfowski, Lewandowski, Jezierski 2004, Kunduri, J. Lucietti 2009, Real 2003, Kundt 1 9(_? é



Near Horizon Geometry
In 4-dim



The Near Horizon Geometry equation in 4-dim

- a compact 2d-manitold equipped with:

gapdz?dzP - a metric tensor, wadz? - a 1-form

2 awp) + wawp + = (A K)gag =0

K - the Gauss curvature
A - the cosmological constant

19



The type D equation as an integrability condition

gAB = mamp +mamp dw =: ) i(Mmamp —mppma)

1
(Q)V(AWB) T WAWB T 5(/\ — K)gap =0

\U/ DR, Lewandowski,
Pawtowski 2018

A —3
mAmPV AV 5 (K 3 m) — 0

Lemma. If Is compact, then everywhere
A DR, Kamiriski, Lewandowski,
vy, = K 5 F28) £ 0 Szereszewski 2019

The emerging integrability condition is known on its own as the Petrov type D equation
that applies to non-extremal isolated horizons. 20



Non-twisting
of the second principal null direction of the Weyl tensor

Theorem 7
Suppose (gAB, wA) satisfy the NHG equation:

V(AwB) + WAwWRB + %(A— K)QAB — ()

then the null vector 7
orthogonal to the
corresponding slice > iIs:

N

DDR, Lewandowski, Pawtowski (2018) 21
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Non-twisting

of the second principal null direction of the Weyl tensor

Theorem 7

Suppose (gAB, wA) satisfy the NHG equation:

V(AwB) + WAwWRB + %(A— K)QAB — ()

then the null vector n
orthogonal to the
corresponding slice > iIs:
1). non-expanding and
shear-free

\z 2). a double principal
null direction

DDR, Lewandowski, Pawfowski (2018)

21



Extremal Isolated Horizons to the 2nd order:
Uniqueness of the extremal Kerr horizon

Suppose — S2 and gAp,WA4, SAB is axisymmetricand A = ()

Then, the solution to the first and second NHG equation is unique, modulo
the obvious rescaling:

gAaB — agap, Sapr—bSap, a,b= const

And it corresponds to the horizon in the extremal Kerr spacetime.

For every solution gAB,WA, SAB the horizon H, dab, Va

Is embeddable in the extremal Kerr spacetime of the corresponding horizon area.

Kolanowski, Lewandowski, Szereszewski 2019
L ewandowski, Pawtowski 2019 Lucietti, Li 2016
22



The Near Horizon Geometry equation in 4-dim:
topological obstacles from the trace

1
"7 IV (awp) +wawp + 5 (A = K)gap =0

Y
4 1
Zﬂ(l — genus) = Z/wAwAdArea +A> A
S
A= / dArea
S
Allowed cases: Pawtowski, L, Jezierski 2004,

Dobkowski-Rytko, Kaminski, L, Szereszewski 2019

genus = 0, A €R
ocenus > 1, A <0
genus = 1, A <0
gcenus =1, A =0, wg=0=K

23



NHG solutions for genus =0

axial — JAB, WA = gzxéremal Ke]mr7 wzxtremal Kerr
symmetry
A=0 Lewandowski, Pawtowski 2002,

generalized to the Einstein-Maxwell case

uniqueness! no more solutions!

generalized to the Einstein-Yang-Mills case
and somehow to the A\ # 0 case Kunduri, J. Lucietti 2009

no axial _
symmetry — ? only partial results known:

(n>v[AwB] =0 = K=A>0, wqg=0 Chrusciel, Reall, Tod 2005

(non-rotating)

the linearized equation about axisymmetric solution admits Chrusciel, Szybka,
only axisymmetric solutions - partially numeric Tod 2017

24



NHG solutions for genus > 0

(Q)V(ACUB) T WAWB T 3 (A K)QAB =0

K - the Gauss curvature A - the cosmologlcal constant

xe(9) <0 = K=A<0, ws=0
Dobkowski-Rytko, Kaminski,

(genus >0) JL, Szereszewski 2018
1
Embeddable in extremal cases A — of:
SHVE:
(—1 2M A)dt2 | dr? - o 2dzdz
—\— — | - T
v T 3 ] — 24 _ 224 (1 — 222)2
A/ r 3 2

tHis is really minus :
compactified by suitable
subgroup of isometries o5



Spacetimes foliated by non-expanding surfaces
of co-dimension 1

26



Spacetimes foliated by non-expanding surfaces
of co-dimension 1

Let U = const define the foliation. A distinguished choice for /

(= —g""V, u

On each space-like section of every non-expanding horizon the following foliation
condition is satisfied:

1 1
— "V qwp) +wawp — §(n)RAB +EAQAB =0

This equation is dual to the Near Horizon Geometry Equation, and each leaf of the
foliation defines an abstract extremal IH geometry by WA = —WwaA -

n L., 1
( )V(ACUB) T WAWB — 5( )RAB +EAgAB =0

Kundt 1962, Podolsky 2008 L, Waluk, Szereszewski 2016, L, Szereszewski 2018
Pawtowski, L, Jezierski 2004, 27



Non-expanding horizon foliation and a transversal horizon

U const

28




Spacetimes foliated by non-expanding horizons

Theorem 8. Suppose 4-dim spacetime )/, 9uv is foliated by non-expanding
horizons emanating from a single transversal isolated horizon; then the vacuum

Einstein equations with a cosmological constant A are satisfied if and only if
this is a near horizon geometry, namely

gudxtdx” = gABdmAde—

1 2
2du |dv — ZUwAda:A — 502 <(n)VAwA + QwAwA + —A> du
n

and
1 1
—(n)V(AwB) + WAWRB — §(R)RAB —I—EAgAB =0

[ ewandowski, Szereszewski, Waluk 2016, Lewandowski, Szereszewski 2018 29



Summary
A - B —3
The type D equation: m“ " m~VaVpW¥, ? =0
1
Non-twisting of the second double principal vector if:  V(awp) +wawp + 5(/\ — K)gap =0

All axisymmetric solutions to the type D eq. for trivial p.f.b. structure on topological 2-
sphere parametrized by (A, J);

All solutions on genus>0 derived (non-rotating);

All axisymmetric solutions solutions to the type D eq. for a non-trivial p.f.b structure on a
2-sphere derived, generic 3-parameter solution non-embeddable in the known
generalized black hole solutions;

Open problem: existence of non-axisymmetric solutions on topological sphere;
Bifurcated horizon - axial symmetry without rigidity theorem:;
Type D equation as an integrability condition for NHG;

NHG solutions for genus=0 and genus>0;



