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Plan of the talk!

1). Non- extremal Isolated Horizons stationary to the second order:!

' type D equation !

' solution to the type D equation on axisymmetric 2-sphere
section of the |H!

solution to the type D equation on genus>0 section of the IH!
solution to the type D equation on IHs of the non-trivial
topology;!

' bifurcated Petrov type D horizon !

2). Extremal Isolated Horizons stationary to the second order and the NHG:!
" Near Horizon Geometry equations in (n+2)-dim!
" NHG in 4-dim:!
' Solution to NHG for genus=0!
' Solution to NHG for genus>0!

' Spacetimes foliated by non-expanding surfaces !of co-dimension 1
!
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|solated Horizons (stationary to the 2nd order)

H - 3dim null surface in 4dim spacetime

Gu +! gu =

M1, = 0

! (! a,gab)

Rotation Potential:

b _ n b
EALERN

Surface Gravity:

=R

Non-extremality condition:

1" EO

, Vu » Ry
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The type D equation



The Weyl tensor in Newman-Penrose formalism

- Spacetime Weyl tensor In the null frame formalism may be
expressed by the following complex valued N-P

components: |

o = Cau41, 11 = Cuazm 2 Cy123,

I 3

C3432, 4 = Caz23

Four components are constant along the null generators
ofH: pr1, =0, 120,1,2,3

- Stationarity to the second order:. D! 4, =0

- The components ! g and ! ; vanish due to vanishing of

the expansion and shear of ! T .
0 1 0

. 1 " 11 1 . 1" —_— ] ]
o= (K +0")+ gH# =1 + 2 where ! lap = Alg



Possible Petrov types

The spacetime Weyl tensor at H Is determined by the
data

(S, g ,! A)

Theorem 1
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Possible Petrov types

The spacetime Weyl tensor at H Is determined by the
data

(S1 gAB 1 | A)
Theorem 1
The possible Petrov types of H are:
X Il, D, M, M, O
I
l > =0 ! O K:.—,d!AB:O
3
1 2E0 = generically type II, unlessk

DDR, Lewandowski, Paw!owski (2018)
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The Petrov type D equation

We use a null 2-frame

Ja — MaMp + Ma Mg nag = 1(Bamg | mgmy)

Theorem 2
At H the spacetime Weyl tensor is of the Petrov type D
Iff the following two conditions are satisbed:

= (0 The Petrov type D eq.

DDR, Lewandowski, Paw!owski (2018)



Solution to the type D equation on
axisymmetric 2-sphere section
of IH
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Axisymmetric 2-sphere section of the IH

Consider a metric: Jag dx? dxB = QZ(! )(d! 2 +sin?1d" 2)

Q?sin!
and transformation ~ dX = ~2 d! that yields:

gag dX*dx® = R?(57dx* + P2d! ?)

Regularity conditions: Plx=+1=0 |y PZ\X: ;1 =172

Wl

Type D equation reads: ! 3! '2 =0
: : | 3 1 . 1
and its solution: (Cix+ Cp) " =1, =1 Q(K + ")+ 6#



Axisymmetric solution to the Petrov type D equation

Theorem 3
The family of axisymmetric solutions to the Petrov type D
equation with (or without) cosmological constant debPned on a
topological sphere can be parametrized by two numbers (A,J):
the area and angular momentum, respectively. They can take

the following values:
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Axisymmetric solution to the Petrov type D equation

Theorem 3
The family of axisymmetric solutions to the Petrov type D
equation with (or without) cosmological constant debPned on a
topological sphere can be parametrized by two numbers (A,J):
the area and angular momentum, respectively. They can take

the following values:

™ -

- 12 A 1A ' 12
for! >0:J! # # for Al O,!— and |J|! O’ﬁ T 1 forA'! !—,#

for! <0:J! "# # and Al O #

Lewandowski, Paw!owski (2003) for ! =0



Embeddabllity of the axisymmetric solutions

Every solution debnes a type D isolated horizon
whose Iintrinsic geometry coincides with the intrinsic

geometry of a non-extremal Killing horizon contained
In one of the following spacetimes:

1). Kerr - (anti) de Sitter ;



Embeddabllity of the axisymmetric solutions

Every solution debnes a type D isolated horizon
whose Iintrinsic geometry coincides with the intrinsic

geometry of a non-extremal Killing horizon contained
In one of the following spacetimes:

1). Kerr - (anti) de Sitter ;

2). Schwarzschild - (anti) de Sitter



Embeddabllity of the axisymmetric solutions

Every solution debnes a type D isolated horizon
whose Iintrinsic geometry coincides with the intrinsic
geometry of a non-extremal Killing horizon contained
In one of the following spacetimes:

1). Kerr - (anti) de Sitter ;
2). Schwarzschild - (anti) de Sitter ;
3). Near horizon limit spacetime near an extremal

horizon contained either in the K(a)dS or S(a)dS
Spacetime.



Solution to the type D equation
on genus>0 sections of IH



Petrov type D equationon S ofgenus >0

Consider the following metric tensor:
2 Al —
Oas dX*dX® = 5 dzde m*1a = Pl

| = iédz! dz

Petrov type D equation reads:

| 1 1

1y P21, 0% =01 P2, % = F(2)

Globally debned holomorphic vector beld:! F(z)!,

F(z) = Fg = const for genus = 1
F(z) =0 for genus > 1.



Solution to the Petrov type D equationon S of genus >0

It Is straightforward to show that even for genus = 1:

T

dz =0
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Solution to the Petrov type D equationon S of genus >0

It Is straightforward to show that even for genus = 1:

T

dz =0

1
3

Wl

Fo !'=i "l ,3dz!'dp="i d !,
S S S

Theorem 4
Suppose S Is a compact 2-surface genus > 0. The only solutions to
the Petrov type D equation with a cosmological constant |
are (g,!) such that:

|
d =0 K:const!:'§

DDR, Kami"ski, Lewandowski, Szereszewski (2018)



Solution to the type D equation
on IHs of the non-trivial topology



The type D equation for and non-trivial bundle

Now: l dArea =27mcm =.27n Z 0
S

where: m! Z

m characterizes U(1) bundle:

DDR, Lewandowski, Rfcz (2019)

10
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The type D equation for and non-trivial bundle

Now: l dArea =27mcm =.27n Z 0
S

where: m! Z
H

S

m characterizes U(1) bundle:

We found all axisymmetric solutions which for every value of the
topological charge 111 set a 3-dim family that can be parametrized

by the area, surface gravity and a parameter corresponding to
rotation.

Embeddabilty???

DDR, Lewandowski, Rfcz (2019) 10



Axisymmetric solutions to the type D equation
on horizons of non-trivial bundle topology

Class 1 Class 2 Class 3
1 1 ! 1
2 2: _ 2: w
R%>0 AT TR TN
P2=11 x2  p2=q) x2 peo DX FENACIM e
' x—Lin@-1")*+12
: #\PZ . B -
- 2 1oy 2 110127 n( L i
| = " 2
JR2 ! = A | = Im & -

X1 - " ¢x+ ine!" 1 D)+ it
] 2! . ok ! !



Bifurcated Petrov type D
nhorizon



Bifurcated Petrov type D horizon: data

Ricz
Lewandowski
Szereszewski

11



Bifurcated Petrov type D horizon: equations

Petrov type D equations:!

1
"forH! @ m m°l Al g(I+ 6)' 5 =0
" ~ A B | | 1" L _
for HO:! M m=1 5! g (1 + 6) 3 =0
hold simultaneously on ! additional (axial) symmetry

Cole, Rfcz, Valiente Kroon 2018
Lewandowski, Szereszewski 2018

12



Bifurcated Petrov type D horizon in conformally 3at coordinates

gag dX"dx® = édzdz m~l, = PI,
P+ <) D=0 ¢ Ll = EO
|Z(P2!Z(l+ %)! %):0 | (1 + %)! L_ (’?3(125)
B T TR U AT FFfj) o @P(;”)

13



Axial symmetry without the rigidity theorem

Theorem 6 !
Suppose (das ,! A) debned on # satisfy the Petrov type D equation:!
m mB! Al g (l+ (—15" 5 =0
and the conjugate one:! A
mAmB1 Al g(1+ - '3 =0
Then there is a vector Peld! on S such that!
L!gAB:O leIZO
A | AB " 711
I % = Rel/lm dArea™ !5 (" + 6)' 3

Corollary: the axial symmetry for
14



Extremal Isolated horizons
stationary to the second order



Extremal Isolated Horizons to the 2nd order
In (n+2)-dim spacetime

H - (n+1)-dim null surface in (n+2)-dim spacetime M

(n+2) R’u! | }(n+2) Rg’u! + | J.! =0

2
Rotation Potential:
Ml = 0 INEE R
.u —
Surface Gravity:
A
1! = n ;:’:/.a
( ( \ a
|
LiQu =
|
LiRpms =

15



Extremal Isolated Horizons to the 2nd order

In (n+2)-dim spacetime

H - (n+1)-dim null surface in (n+2)-dim spacetime M

(R 1 T+

2
IP!H: 0
A
t t\
Lign =0
[Lt,! H]:O
L{Rus =0

Rg,u! + | g,u! =0

Rotation Potential:

b —_ wu b
BN

Surface Gravity:

# Extremality condition: %

' =0

15
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Extremal Isolated Horizons to the 2nd order
In (n+2)-dim spacetime

H - (n+1)-dim null surface in (n+2)-dim spacetime M

(n+2) R’u! | }(n+2) Rg'u! + | J.! =0

2
Rotation Potential:
Ml = 0 INEE R
. IJ -
Surface Gravity:
A
|1 = ;:’:/.a
t t \ J 4
|
9 £ Extremality condition: ™
[Lt,!u]:O : !!:O |
L{Ry =0
V|g = const
v:H! s

(V) =1 “Sap =" 4" pv 15



Near Horizon Geometry
equations in (n+2)-dim



Extremal Isolated Horizons to the 2nd order:

eguations
1 1
() aleyt tals é(n)RAB + ﬁ! gas =0

Hajicek 19700s Isenberg, Moncrief 1983, |
Ashtekar, Beetle, Lewandowski 2001

SAB ;CC | S;AB | ZS(BCRAC)+28CD Racep T2 CSC;(AB)+3! (AS;B) I 3l CSAB -C

| 20 (ASg)c’® +2Scale)y“! 20%8Sac ! 1algS+!c!“Spg =0
R.. = MR, an = (M1 S:= Sc©

Kolanowski, Lewandowski, Szereszewski 2019

16



Extremal Isolated Horizons to the 2nd order:
eguations

SaB ;CC ! S;AB ! ZS(BCRAC)+28CD Racgp +2! CSC;(AB)'FB! (AS;B) I 3 CSAB -C

| 21 (ASe)c’” +2Scale) ! 20 8Sac ! 1algS+!1c!%Spg =0

Linearin Sag  on the background of ! A:YaB that satisfy the
equation:!

Remark: This equation Is exact. However since it Is linear, it also
features in linear perturbations of Near Horizon Geometry

spacetimes. Lucietti. Li 2016

17



The Near Horizon Geometry spacetime

Given Il dimensional manifold endowed with YUaB ,! A such that
1 1
N " N —
()! (A!B)'I'!A!B é()RAB +ﬁ! JaB =0

Debneon S| R! R

gw dxtdx' = gag dx"dx"!
| A 1 2 (n)w A A 2. ﬂ
2du dv! 2v!l o dx™ | §V Al M +H21 00 4 + ﬁ! du
Then (n+2) Gur +!1gu =0
and H=SI RI {V:O} is an extremal Killing horizon.
K=vl,! uly,, =1y

Paw!owski, Lewandowski, Jezierski 2004, Kunduri, J. Lucietti 2009, Real 2003, Kundt 19?%3



Near Horizon Geometry
IN 4-dim



The Near Horizon Geometry equation in 4-dim

- a compact 2d-manifold equipped with:

gag dxdx® - a metric tensor,

2), 1

| dx” - a 1-form

b alteytlalps + é(! " K)gas =0

K - the Gauss curvature
| - the cosmological constant

19



The type D equation as an integrability condition
Op = MaM@g + oM dl = | I(mamg ! m@gMmMy)

1
Dl algy+!ale+ S K)Ge =0

DR, Lewandowski,
Paw!owski 2018

' | 1
I -3
mAmB!A!B K" —+ 1" =0
3
Lemma. If IS compact, then everywhere
" _— DR, Kami!ski, Lewandowski,
| 2 — K | § +1# =0 Szereszewski 2019

The emerging integrability condition is known on its own as the Petrov type D equation

that applies to non-extremal isolated horizons 20



Non-twisting
of the second principal null direction of the Weyl tensor

Theorem 7
Suppose (0aB ,! A) satisfy the NHG equation:

L alsyt!lals+3( " K)gas =0

then the null vector 11
orthogonal to the
corresponding slice IS:

[

DDR, Lewandowski, Paw!owski (2018) 21



Non-twisting
of the second principal null direction of the Weyl tensor

Theorem 7
Suppose (0aB ,! A) satisfy the NHG equation:

L algytlale +3(0 " K)gag =0

then the null vector 11
orthogonal to the

corresponding slice IS:
1). non-expanding and
shear-free

[

DDR, Lewandowski, Paw!owski (2018)
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Non-twisting
of the second principal null direction of the Weyl tensor

Theorem 7
Suppose (0aB ,! A) satisfy the NHG equation:

L algytlale +3(0 " K)gag =0

then the null vector 11
orthogonal to the

corresponding slice IS:
1). non-expanding and
shear-free

' 2). a double principal
null direction

DDR, Lewandowski, Paw!owski (2018) 21



Extremal Isolated Horizons to the 2nd order:
Unigueness of the extremal Kerr horizon

Suppose — SZ and 0JaB , | A1SAB is axisymmetricand | =0

Then, the solution to the bPrst and second NHG equation is unique, modulo
the obvious rescaling:

O " AQaB , Sag " bSp, a, b= const

And it corresponds to the horizon in the extremal Kerr spacetime.

For every solution OaB | A SAB the horizon H, Oab; | a

IS embeddable in the extremal Kerr spacetime of the corresponding horizon area.

Kolanowski, Lewandowski, Szereszewski 2019
Lewandowski, Paw"owski 2019 Lucietti, Li 2016
22



The Near Horizon Geometry equation in 4-dim:
topological obstacles from the trace

1
| @ aley+lale + S " K)gas =0

4 1
K(l! genus) = x " "AdArea + ! " |

| S

A = dArea

S

Allowed cases: Paw"owski, L, Jezierski 2004,
Dobkowski-Ry"ko, Kami!ski, L, Szereszewski 2019

genus=0, ! I R
genus-> 1,' < (O
genus=1 ! < (
genUS:l, l =0, 1, =0= K

23



NHG solutions for genus =0

- | | _ extremal Kerr extremal Kerr
axial ' UaB, * A OaR , T x
symmetry
| =0 Lewandowski, Paw!owski 2002,
generalized to the Einstein-Maxwell case
uniqueness! no more solutions!
generalized to the Einstein-Yang-Mills case
and somehow to the | £ Ocase Kunduri, J. Lucietti 2009
no axial _
symmetry ? only partial results known:
(n)! [A! B] — 0 K =110, 1A =0 chru#ciel, Reall, Tod 2005
(non-rotating)
the linearized equation about axisymmetric solution admits Chru#ciel, Szybka,
only axisymmetric solutions - partially numeric Tod 2017

24



NHG solutions for genus > 0

1
Tl tale+ S " K)gae =0

K - the Gauss curvature | - the cosmological constant

1e(S)! 0+ K=1'10 1A=0

Do o
(genus > 0) Dobkowski-Rylko, Kami"ski,

JL, Szereszewski 2018

Embeddable in extremalcases | = | of:

2M |
1 (1 1! =1 r2)dt? + + 1
( T 3) Jar gt r2s (1! 3zB)?

this is really minus .
compactibed by suitable !
subgroup of isometries o5



Spacetimes foliated by non-expanding surfaces
of co-dimension 1

26



Spacetimes foliated by non-expanding surfaces
of co-dimension 1

Let U = CONSt debne the foliation. A distinguished choice for !

— g“' "

On each space-like section of every non-expanding horizon the following foliation
condition is satisbed:

1 1
N)n N —_
LM algy+ T alg ! ZMWRag + =1 gag =0
2 n
This equation is dual to the Near Horizon Geometry Equation, and each leaf of the
foliation dePnes an abstract extremal IH geometry by LA I"H L
1 1
n n n
(n)) Ayt !lals é()RAB +ﬁ!gAB =0

Kundt 1962, Podolsky 2008 L, Waluk, Szereszewski 2016, L, Szereszewski 2018
Paw"owski, L, Jezierski 2004, 27



Non-expanding horizon foliation and a transversal horizon

28



Spacetimes foliated by non-expanding horizons

Theorem 8. Suppose 4-dim spacetime M, g,,1  Is foliated by non-expanding
horizons emanating from a single transversal isolated horizon; then the vacuum

Einstein equations with a cosmological constant ate satisbed if and only if
this iIs a near horizon geometry, namely

Ou! dxHdx’ i OaB dXA dXB
I (n)w A A 2. ﬂ
2du dv! 2v! podx™ ! QV Al D +21001 4 + ﬁ! du
and
. 1 1
(M algy+1alp ! é(n)RAB +—1'gss =0

Lewandowski, Szereszewski, Waluk 2016, Lewandowski, Szereszewski 2018 29



Summary

| 1
¥ The type D equation: @ Sl Al g , =0
1 11
¥ Non-twisting of the second double principal vector if: ! (a!s)+t !als + é(! K)0Ons

¥ All axisymmetric solutions to the type D eq. for trivial p.f.b. structure on topological 2-
sphere parametrized by (A, J);

¥ All solutions on genus>0 derived (non-rotating);

¥ All axisymmetric solutions solutions to the type D eq. for a non-trivial p.f.b structure on a
2-sphere derived, generic 3-parameter solution non-embeddable in the known
generalized black hole solutions;

¥ Open problem: existence of non-axisymmetric solutions on topological sphere;
¥ Bifurcated horizon - axial symmetry without rigidity theorem;
¥ Type D equation as an integrability condition for NHG;

¥ NHG solutions for genus=0 and genus>0;



