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Motivation back

Extend the use of Hamiltonian methods to field theories in bounded
regions. No obstructions in principle but problematic in practice.

The computation of Poisson brackets when boundaries are present is not
trivial. At some point functional-analytic issues become relevant.

Can we somehow avoid these problems? Yes, but to this end the standard
approach must be suitably (subtly?) modified.

A geometric reinterpretation of the usual method helps

exegesis: critical interpretation of a text, particularly a sacred text
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The Book of constrained Hamiltonian systems back
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Singular Hamiltonian systems: the Dirac “algorithm”back

The Dirac algorithm in words

Write the canonical momenta p in terms of q and q̇.

Find the primary constraints, i.e. relations φm(q, p) = 0 between q and
p originating in the “impossibility to solve for all the velocities” in terms
of positions and momenta.

Find a Hamiltonian H and build the total Hamiltonian HT = H +∑
umφm in which the primary constraints are introduced together with

some multipliers um(t).

The um must be fixed by enforcing the consistency of the time evo-
lution of the system. This consistency requires, for instance, that the
primary constraints be preserved in time:

{φm,H}+ un{φm, φn} ≈ 0

The weak equality symbol ≈ means that the previous identity must hold
when the primary constraints are enforced.
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Singular Hamiltonian systems: the Dirac algorithm back

The Dirac algorithm in words (continued)

Several possibilities:

1 The consistency conditions may be impossible to fulfill. This means
that our starting point (the Lagrangian) makes no sense.

2 The consistency conditions may be trivial, i.e. identically satisfied once
the primary constraints are enforced.

3 The um may not appear in the consistency conditions. In this case we
have secondary constraints.

4 The consistency conditions can be solved for the um.

If we find secondary constraints their “stability under time evolution”
must be enforced, exactly as we did for the primary constraints. Ho-
wever we do not have to modify the total Hamiltonian (i.e. we do
not have to include them in a new, “more total” Hamiltonian).

J. Fernando Barbero G. (IEM-CSIC) geometric exegesis Dirac Jurekfest 2019 5 / 33



Singular Hamiltonian systems: the Dirac algorithm back

The Dirac algorithm in words (continued)

Let us look with some care at the equations

{φj ,H}+ un{φj , φn} ≈ 0

These are linear, inhomogeneous equations for the unknowns un. As
such, the inhomogeneous term will be subject, generically, to conditions
necessary to guarantee solvability.
These are the secondary constraints. Their number is determined by
the rank of the matrix {φj , φn} (beware of bifurcation!).

Once solvability is guaranteed we can find the un (as functions of the
generalized coordinates and momenta) and, maybe, arbitrary parameters.

um = Um(q, p) + va(t)Vam(q, p) ,

where Van{φj , φn} = 0 and the va(t) are arbitrary functions of time.
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Singular Hamiltonian systems: the Dirac algorithm back

The Hamiltonian Ĥ = H + (Um(q, p) + va(t)Vam(q, p))φm defines con-
sistent dynamics equivalent to the one given by the singular Lagrangian
used to define our system for initial data for (q, p) satisfying all the
constraints (primary and secondary).

Comments on the Dirac algorithm

Its logic is difficult to follow at times. For instance, sentences such as

The Poisson bracket [g , um] is not defined, but it is multiplied by something
that vanishes, φm. So the first term of (1-18) vanishes. (P.A.M. Dirac, LQM)

sound strange.

It is not so straightforward to extended it to field theories.

This notwithstanding, the algorithm works well if followed to the
letter! (and if the results are correctly interpreted).
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Scalar field with Dirichlet boundary conditionsback

S [ϕ,ψ0, ψ1] =

∫ t2

t1

dt

[
1

2

∫ 1

0
dx(ϕ̇2 − ϕ′2)− ψ0

(
ϕ(0)− ϕ0

)
+ ψ1

(
ϕ(1)− ϕ1

)]

The configuration variables are ϕ(x), ψ0 and ψ1.

ψ0 and ψ1 are Lagrange multipliers introduced to enforce the boundary
conditions ϕ(0) = ϕ0 and ϕ(1) = ϕ1.

ϕ0 , ϕ1 ∈ R, (boundary values of ϕ).

ϕ ∈ C 2(0, 1) ∩ C 1[0, 1] (smooth enough).

Do we get the right field equations?

We should better check...
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Scalar field with Dirichlet boundary conditionsback

Field equations: variations of the action

δS =

∫ t2

t1

dt

(∫ 1

0
dx(−ϕ̈(x) + ϕ′′(x))δϕ(x)− ϕ′(x)δϕ(x)

∣∣1
0

)
−
∫ t2

t1

dt(ϕ(0)− ϕ0)δψ0 +

∫ t2

t1

dt(ϕ(1)− ϕ1)δψ1

−
∫ t2

t1

dtψ0δϕ(0) +

∫ t2

t1

dtψ1δϕ(1)

ϕ̈(x)− ϕ′′(x) = 0 , x ∈ (0, 1)

ϕ(0) = ϕ0

ϕ(1) = ϕ1 X
ψ1 − ϕ′(1) = 0

ψ0 − ϕ′(0) = 0
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Scalar field with Dirichlet boundary conditionsback

Canonical momenta:

π(x) :=
δL
δϕ̇(x)

= ϕ̇(x) , p0 :=
∂L
∂ψ̇0

= 0 , p1 :=
∂L
∂ψ̇1

= 0

Primary constraints p0 = 0 and p1 = 0.

Non-zero Poisson brackets

{ϕ(x), π(y)} = δ(x , y) , {ψ0, p0} = 1 , {ψ1, p1} = 1

Total hamiltonian

HT = ψ0

(
ϕ(0)−ϕ0

)
−ψ1

(
ϕ(1)−ϕ1

)
+u0p0+u1p1+

1

2

∫ 1

0
dx
(
π2+ϕ′2

)
.

Here u0 and u1 are the Lagrange multipliers that enforce the primary
constraints in the Dirac algorithm.

Before going further just a short question...
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Scalar field with Dirichlet boundary conditionsback

What is the value of {ϕ(0), π(0)}?, Is it 1?, Is it δ(0, 0)?

This is not an academic question
Secondary constraints (at x = 0, analogously at x = 1)

{HT , p0} = ϕ(0)− ϕ0 = 0 (OK)

{HT , ϕ(0)− ϕ0} =

∫ 1

0
dxπ(x) {π(x), ϕ(0)}︸ ︷︷ ︸

−δ(x ,0)

= −π(0) = 0 (uhm...)

{HT , π(0)} = {ϕ(0), π(0)}ψ0 +

∫ 1

0
dxϕ′(x){ϕ′(x), π(0)}

= {ϕ(0), π(0)}ψ0 + ϕ′(x){ϕ(x), π(0)}
∣∣1
0

−
∫ 1

0
dxϕ′′(x){ϕ(x), π(0)} (???)

The algorithm crashes. One has to be careful...
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Geometric interpretation of the Dirac algorithm back
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Singular Hamiltonian systems: the Dirac algorithm back

The geometric exegesis of the Dirac algorithm, preliminaries.

The goal is to find a Hamiltonian H defined on the whole phase space
such that the integral curves of the Hamiltonian vector field XH describe
the dynamics of the system for allowed initial data. This is important
to implement the quantization programme à la Dirac.

The dynamics must take place on the primary constraint submanifold
of the phase space given by FL(TQ) (the image of the fiber derivative
defining the momenta).

The Hamiltonian vector field, when restricted to the submanifold where
the dynamics takes place, must be tangent to it (otherwise the integral
curves would fail to remain there!)

The gist of Dirac’s algorithm is this tangency condition
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Singular Hamiltonian systems: the Dirac algorithm back

The geometric exegesis of the Dirac algorithm (continued).

The starting point is the identification of the primary constraints φn.
These are found by computing the fiber derivative (definition of mo-
menta)

FL : TQ → T ∗Q

From the energy E we get the Hamiltonian from H ◦FL = E (a real fun-
ction in T ∗Q which is uniquely defined only on the primary constraint
submanifold M0 := FL(TQ), given by constraints φn = 0).

Find the vector fields X satisfying

ıXΩ− dH − undφn = 0

and require also

φn(q, p) = 0 .
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Singular Hamiltonian systems: the Dirac algorithm back

The geometric exegesis of the Dirac algorithm, (continued).

In order to have consistent dynamics we must require X to be tangent
to the primary constraint submanifold M0.

ıXdφi
∣∣M0 = 0

ıXdφn just gives, at each point, the directional derivative of φi along
X . Notice that it can be computed without using the symplectic form.
Three things may happen at this point:

1 The tangency condition is identically satisfied.

2 The tangency condition is only satisfied on a proper submanifold of
the primary constraint submanifold.

3 The tangency condition fixes some of the arbitrary un.
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Singular Hamiltonian systems: the Dirac algorithm back

The geometric exegesis of the Dirac algorithm, (continued).

In the first case we are done.

In the second case the conditions defining the submanifold are secon-
dary constraints. The Hamiltonian vector field X will be tangent to the
primary constraint manifold but may fail to be tangent to the new
submanifold. If this is the case we must persevere with tangency.

In the third case the specific values of un, when introduced in X will
give us a Hamiltonian vector field defining the right evolution.

The dynamics that we obtain by projecting the integral curves of
the Hamiltonian vector fields onto Q is the same as the Lagrangian
dynamics. We also obtain the additional conditions that the initial
data (on the generalized positions and momenta) must satisfy.
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Scalar field with Dirichlet boundary conditionsback

(Homogeneous conditions ϕ(0) = ϕ(1) = 0)

Lagrangian

L(v) =
1

2

∫ 1

0

(
v2ϕ − ϕ′2 + 2 (ψϕ)′

)
Fiber derivative

〈FL(v)|w〉 =

∫ 1

0
vϕwϕ, −→

pϕ(·) :=

∫ 1

0
vϕ · ,

pψ(·) := 0 .

Hamiltonian (extension to the full phase space)

H =
1

2

∫ 1

0

(
p2ϕ + ϕ′2 − 2 (ψϕ)′

)
,
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Scalar field with Dirichlet boundary conditionsback

Vector fields

Y ∈ T(ϕ,ψ;pϕ,pψ)T
∗Q → Y =

(
(ϕ,ψ; pϕ, pψ) , (Yϕ,Yψ,Y pϕ(·),Y pψ(·))

)
.

Y pϕ(·),Y pψ(·) can be represented by real functions Ypϕ ,Ypψ such that
over functions f , g ∈ Q

Y pϕ(f ) :=

∫ 1

0
Ypϕf , Y pψ(g) :=

∫ 1

0
Ypψg .

Differential of H acting on a vector field Y

dH(Y ) =

∫ 1

0

(
Ypϕpϕ − ϕ′′Yϕ

)
−
[(
ψ − ϕ′

)
Yϕ + ϕYψ

]
(1) +

[(
ψ − ϕ′

)
Yϕ + ϕYψ

]
(0) .

Canonical symplectic form in T ∗Q, acting on a pair of vector fields X ,Y

Ω(X ,Y ) =

∫ 1

0

(
YpϕXϕ − XpϕYϕ + YpψXψ − XpψYψ

)
.
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Scalar field with Dirichlet boundary conditionsback

We solve for X in the equation (for all Y )

Ω(X ,Y ) = dH(Y ) + 〈u|dpψ〉(Y ) = dH(Y ) +

∫ 1

0
uYpψ

By considering first fields Y vanishing at 0 and 1 we get the Hamiltonian
vector field X in the interval [0, 1]

Xϕ = pϕ , Xψ = u ,

Xpϕ = ϕ′′ , Xpψ = 0 .

Once we know X , we can allow Y to be arbitrary on the boundary. This
gives us, then, the following secondary constraints

ϕ(0) = 0 ϕ(1) = 0 , (1)

ψ(0)− ϕ′(0) = 0 ψ(1)− ϕ′(1) = 0 , (2)

which include both the Dirichlet boundary conditions and the values of ψ
at the boundary. This is the result given by the Euler-Lagrange equations.

J. Fernando Barbero G. (IEM-CSIC) geometric exegesis Dirac Jurekfest 2019 19 / 33



Scalar field with Dirichlet boundary conditionsback

We must check now the tangency of the Hamiltonian field, to the submani-
fold in T ∗Q defined by the constraints pψ = 0 and the boundary conditions

Tangency of the Hamiltonian vector field

0 = ıXdpψ = Xpψ ,

0 = ıXd (ϕ(j)) = Xϕ(j) = pϕ(j) , j ∈ {0, 1}
0 = ıXd

(
ψ(j)− ϕ′(j)

)
= Xψ(j)− X ′ϕ(j) = u(j)− p′ϕ(j) j ∈ {0, 1} .

The first gives nothing new.

The next pair of conditions are new secondary constraints at 0 and 1.

The last pair fixes the Dirac multiplier at the boundary u(0) = p′ϕ(0),
u(1) = p′ϕ(1).
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Scalar field with Dirichlet boundary conditionsback

We must demand now that the vector field X be tangent to the new sub-
manifold defined by the secondary constraints just obtained. These new
tangency conditions give

0 = ıXd (pϕ(j)) = Xpϕ(j) = D2ϕ(j) , j ∈ {0, 1}

where Dn denotes the n-th order spatial derivative.

As we see, there are more secondary constraints and additional tan-
gency requirements. Iterating this process, we find an infinite number of
boundary constraints of the form (n ∈ N)

D2nϕ(0) = 0 , D2npϕ(0) = 0 ,

D2nϕ(1) = 0 , D2npϕ(1) = 0 .
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Scalar field (final result) back

Hamiltonian vector field

Xϕ = pϕ , Xψ = u ,

Xpϕ = ϕ′′ , Xpψ = 0 .

Primary constraints

pψ(·) := 0

Secondary constraints

ϕ(0) = 0 , ϕ(1) = 0

ψ(0)− ϕ′(0) = 0 , ψ(1)− ϕ′(1) = 0

pϕ(0) = 0 , pϕ(1) = 0

D2nϕ(0) = 0 , D2nϕ(1) = 0 n ∈ N

D2npϕ(0) = 0 , D2npϕ(1) = 0 n ∈ N

The Lagrange multiplier u is arbitrary in (0, 1) but u(0) = u(1) = 0
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Scalar field with Dirichlet boundary conditionsback

Meaning of the boundary constraints D2nϕ(j) = 0 ,D2npϕ(j) = 0 , j = 0 , 1

-1 1 2

-2

-1

1

2
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Scalar field with Dirichlet boundary conditionsback
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Scalar field with Dirichlet boundary conditionsback
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Scalar field with Dirichlet boundary conditionsback
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Scalar field with Dirichlet boundary conditionsback
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Scalar field with Dirichlet boundary conditionsback
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Scalar field with Dirichlet boundary conditionsback

Meaning of the boundary constraints D2nϕ(j) = 0 ,D2npϕ(j) = 0 , j = 0 , 1
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Scalar field with Dirichlet boundary conditionsback

Meaning of the boundary constraints D2nϕ(j) = 0 ,D2npϕ(j) = 0 , j = 0 , 1
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Scalar field with Dirichlet boundary conditionsback

Meaning of the boundary constraints D2nϕ(j) = 0 ,D2npϕ(j) = 0 , j = 0 , 1
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Conclusions back

The geometric approach to the Dirac algorithm

The steps of the Dirac algorithm can be conveniently interpreted in geo-
metric terms.

The stability of the constraints is the tangency condition of the cons-
traint submanifold to the Hamiltonian vector field.

Actual computations can be performed in a way that avoids the use of
formal Poisson brackets. This is sometimes useful, for instance, for field
theories in bounded regions.
In practice the computations are rather clean and quick.

A similar approach—the so called Gotay-Nester-Hinds (GNH) method—
does a similar thing on the primary constraint submanifold.
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Happy birthday, Jurek!!
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