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I Motivation

1990’s: Construction of LQG Hilbert space

ONBasis: Spin network functions (quantised 3-geometry)

Dynamics: Constraints (canonical)

kinematical Hilbert space → physical Hilbert space ?

physical inner product?

[Ashtekar, Lewandowski ‘92, ALMMT (MAFIA) ‘95, Rovelli, Smolin ‘95, Marolf ‘95, Ashtekar, Lewandowski ‘96, Thiemann 
‘’96-’00, ...]



  

I Motivation

1990’s: Construction of LQG Hilbert space

ONBasis: Spin network functions (quantised 3-geometry)

Dynamics: Constraints (canonical)

kinematical Hilbert space → physical Hilbert space ?

physical inner product?

Spin Foam models as “histories of 3-geometries”

1997: Barrett Crane spin foam model

2007: Livine Speziale, EPRL-model, FK-model (4-simplex)

2008: Baratin, Flori, Thiemann (cubulation)

2009: KKL-extension of EPRL-FK (arbitrary 2-complex)

[Reisenberger '94, Barrett, Crane '99, Livine, Speziale '07, Engle, Pereira, Rovelli, Livine '07, Freidel, Krasnov '07, 
Baratin, Flori, Thiemann ‘08, Oriti Baratin '11,... Kaminski, Kisielowski, Lewandowski ‘09]



  

I Motivation

1990’s: Construction of LQG Hilbert space

ONBasis: Spin network functions (quantised 3-geometry)

Dynamics: Constraints (canonical)

kinematical Hilbert space → physical Hilbert space ?

physical inner product?

Spin Foam models as “histories of 3-geometries”

1997: Barrett Crane spin foam model

2007: Livine Speziale, EPRL-model, FK-model (4-simplex)

2008: Baratin, Flori, Thiemann (cubulation)

2009: KKL-extension of EPRL-FK (arbitrary 2-complex)

2010: General class: Operator Spin Foam models

→ useful for renormalisation

[BB, Hellmann, Kaminski, Kisielowski, Lewandowski ‘10]
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II Operator Spin Foam Models: Definition

Ingredients:

• Oriented 2-complex
• Compact gauge group
• Class function
• For each tensor product 

of irreducible representations (and duals) :
an operator

[as in: BB, Hellmann, Kaminski, Kisielowski, Lewandowski ‘10]



  

II Operator Spin Foam Models: Definition

A “state” on       : 

Distribution of irreps of       
To 2-cells (“faces”) of 

→ “edge-Hilbert space”

where                  iff respective orientations agree / disagree

→ “edge-operator”



  

II Operator Spin Foam Models: Definition

Vertex-trace:

Contraction of all indices of edge operators        
on edges meeting at a 0-cell (“vertex”):

→

Where

And (if it converges): “Spin Foam State Sum”

(can be written as sum over irreps and intertwiners of amplitudes)



  

II Operator Spin Foam Models: Definition

2-complex with boundary: (not necessarily connected) subgraph,
e.g. all edges with only one face (“link”), all vertices with only one edge (“node”) 

→ orientation of links determined by that of their respective faces

Boundary Hilbert space:

Spin foam state sum: linear form 
on boundary Hilbert space

→ Boundary decomposes in “in” and “out” part: sesquilinear form on 



  

II Operator Spin Foam Models: Definition

Properties:

● Operators        Hermitean and            :                  independent of orientations of 

● Additionally:      : linear form                 gauge-invariant

→ sum over invariant elements (“intertwiners”):

→                  invariant under trivial subdivisions of faces 

●  Idempotent:               

→                  invariant under trivial subdivisions of edges

● Composition:



  

II Operator Spin Foam Models: Definition

Examples:

● Lattice Yang-Mills theory: 2-complex      dual to cubic lattice, 
Gauge group
Haar projectors:
Wilson action:

● BF-theory: (unregularised) TQFT, Class function              formally (finite
for finite groups, or non-TARDIS-complexes)

● Euclidean Barrett-Crane model: 2-complex dual to 4d triangulation 
gauge group                            class function 
operators                       projectors on 1-dim subspace, 
spanned by BC-intertwiner

● KKL-extension of (Euclidean) EPRL-FK-model:
operators              maps onto
→ “solutions to simplicity constraints” 
→                     Barbero-Immirzi parameter

[Barrett, Crane, ‘99, Barrett, Naish-Guzman ‘08, Kaminski, Kisielowski, Lewandowski ‘09, ...] 



  

II Operator Spin Foam Models: Definition

Further developments / generalisations:

● Feynman-diagrammatic approach

● Dual holonomy formulation (HSFM)

● Non-compact groups (e.g. Lorentzian signature for BC, EPRL-FK)
→ careful removal of divergencies

● Vertex trace: contraction with non-trivial operators (~cosm. const.     )

● Group → Quantum Group (~ cosm. const     , finiteness)

● different state spaces (spin networks → fusion networks, 2-groups, …)

● Sum over      : group field theories, tensor field theories

● Cosine issue: proper vertex

● Non-localities (e.g. volume simplicity constraint implementation)

[Kisielowski, Lewandowski, Puchta ‘11 / BB, Dittrich, Hellmann, Kaminski ‘12 / Engle, Pereira, Rovelli, Livine, ‘09 / Fairbairn, 
Meusburger ‘11 / Han ‘11, BB, Rabuffo ‘17 / Delcamp, Dittrich, Riello ‘16, Dittrich ‘19 / Oriti ‘06, Baratin, Oriti ‘11 / Engle ‘13, Engle, 
Zipfel, Vilensky ‘15 / BB Belov ‘18] 
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II Operator Spin Foam Models: Coarse graining

Spin foam operator so far depends on 2-complex     : discretisation (d.o.f. cutoff)

Physical Hilbert space: contain information about all graphs    : continuum limit

Coarse graining / refinement of graphs: directed set

Choice of embedding maps:

→ Relation between OSFM on      and 

condition: 

→ “Flow of coupling constants”:            parameters of the OSF

results in 

[Manrique, Oeckl, Weber, Zapata ‘05, Rovelli, Smerlak ‘10, Dittrich, Eckert, Martin-Benito ‘11, BB ‘11, BB, Dittrich, Hellmann, Kaminski ‘12, 
Riello ‘13, Dittrich, Steinhaus ‘13, BB ‘14, Dittrich, Mizera, Steinhaus ‘14, Banburski, Chen, Freidel, Hnybida ‘14, Dittrich, Schnetter, Seth, 
Steinhaus ‘16, Delcamp, Dittrich ‘17, BB, Steinhaus ‘17, Lang, Liegener, Thiemann ‘17, BB, Rabuffo, Steinhaus ‘18, ...] 



  

II Operator Spin Foam Models: Coarse graining

Schematically:

Change of     results in → “renormalisation”
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III Toy model: hypercuboidal OSF

OSF toy model: (modified) EPRL-FK model truncated to hypercuboids

class function: 

→ coupling constant

2-complex     : dual to 4d hypercubic lattice 

Operators: 

irreps of 

EPRL “boosting map”

→ sum over spins and intertwiners truncated to
sum over quantum cuboids

→ much simpler than EPRL-FK-KKL, but retains 
some interesting features

[Livine, Speziale ‘07, Bianchi, Dona, Speziale ‘10, BB, Steinhaus ‘15, BB, Steinhaus ‘16, BB, Steinhaus ‘17]



  

III Toy model: renormalisation

Coarse graining step: 
2x2x2x2 → 1 hypercuboid

→ iterate

embedding map (not dynamical):

EPRL-FK model amplitudes, large spin-asymptotic formula
→     the only coupling constant in this case



  

III Toy model: RG fixed point

Isochoric RG flow: 32 → 2 vertices

boundary state const 
4-volume                         const

flow: 

flow has a fixed point!

→ unstable (UV-attravtive)

→ splits phase diagram
into two regions

→ beyond hypercuboids
non-gaussian!

[BB, Steinhaus ‘17, BB, Rabuffo, Stainhaus ‘18]



  

III Toy model: fluctuations at NGFP

Finite size scaling: fluctuations             are similar for different lattice sizes     :

reduced coupling constant:

fluctuations for different lattice sizes:

read off critical exponents 
by collapsing data for different     
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III Entanglement entropy

States → entanglement property between complementary regions

→ Measures entanglement of d.o.f. inside    with those inside    . 

→ Generically scales with #d.o.f. in region (~volume law), 

ground states: area law

→ Interesting quantity in LQG (BH entropy?).

[Rovelli ‘96, Donnelly ‘08, Rovelli, Vidotto ‘10, Engle, Noui, Perez, Pranzetti ‘11, Ghosh, Perez ‘11, Ghosh, Noui, Perez ‘13, Chirco, 
Rovelli, Ruggiero ‘14, Wang, Ma, Zhao ‘14, Han, Hung ‘16, Feller, Livine ‘17, Bianchi, Dona, Vilensky ‘18, Grüber, Sahlmann, Zilker ‘18, 
Bianchi, Dona ‘19, ...]



  

III Entanglement entropy

General framework:

Factorising Hilbert space:

State: → reduced density matrix

→ entanglement entropy: 

Non-factorising Hilbert space:

State:

→ entanglement entropy: 

[e.g. Bianchi, Dona ‘19]



  

III Entanglement entropy of physical states in hypercuboidal OSFM

In the following: 

entanglement entropy of physical states in hypercuboidal OSFM

In the physical Hilbert space          , due to cylindrical consistency, several kinematical 
states on different graphs are identified.

One quantum cuboid equivalent to several ones:

Coefficient is the physical inner product

Embedding map + spin foam transition → “physical embedding map”



  

III Entanglement entropy of physical states in hypercuboidal OSFM

Simple case: subdivision of one quantum cuboid into two:

Coarse state:

Fine state:

(graphs toroidally compactified)



  

Bipartition of the system:

Coarse state:

Hypercuboidal symmetries 

→

Additional condition: Volume-simplicity constraint

→

(excludes non-metric degrees of freedom)

Isochoric transition: 4-volume      constant

III Entanglement entropy of physical states in hypercuboidal OSFM

[BB, Belov ‘17, Dona, Fanizza, Sarno, Speziale, 17]



  

Entanglement entropy: depends on 

Dressed EPRL-FK amplitude:

(face-, edge- and vertex amplitudes )

→ Maximum of entanglement entropy!

Example:  → 

III Entanglement entropy of physical states in hypercuboidal OSFM



  

More complicated case: subdivision into 4 quantum cuboids

Bipartition of system:   

isochoric flow & geometricity: relations among spins
→ only       remain as variables

III Entanglement entropy of physical states in hypercuboidal OSFM



  

Isochoric model: fix 4-volume, & volume-simplicity constraints (~geometricity):

Again, EE maximal for specific value of coupling constant: RG fixed point!

→ RG fixed point characterised by maximum of 
entanglement entropy of physical states!

→ Effect expected to be more pronounced on larger lattices

III Entanglement entropy of physical states in hypercuboidal OSFM



  

III Entanglement entropy of physical states: interpretation

Vertex translation symmetry:

→ Change of spins according to deformation of flat polytopes.

↔ remnant of diffeomorphism symmetry in Regge calculus

All final kinematic states for different        can be related by 
Vertex translations (different subdivisions of the same cuboid)

Summation ↔ gauge orbit of vertex translation symmetry

[Regge ‘61, Freidel, Louapre ‘03, Dittrich ‘08, BB, Dittrich ‘08-09’, BB, Steinhaus ‘15, ...]



  

III Entanglement entropy of physical states: interpretation

Interpretation:

→ Diffeomorphically equivalent d.o.f. are getting entangled at RG fixed point!
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IV Summary

Review of operator spin foam models:

● Class of models to construct transitions between (spin) network states

● → KKL-extension of EPRL-FK model is an example

● → suitable for coarse graining: cylindrical consistency ↔ RG flow of model

Example: hypercuboidal OSF → toy model for EPRL-FK model

● Large spin → only one coupling constant
→ related to face amplitude

● Flow in       : UV fixed point.

● → at FP: restoration of broken diffeo-symmetry in SFM

● Feature of FP: Entanglement Entropy increases: diffeo-d.o.f. become entangled

→ Feature chances to remain in the full EPRL-FK model
→ Sign of restoration of broken diffeo symmetry at FP
→ Neat new method to identify interesting points in parameter space



  

Happy birthday Jurek!
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