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Motivation

GW150924
• Spectacular discovery of gravitational waves
was made possible by matched filtering.
• Discoveries use ∼ hundred thousand
waveforms, constructed through ingenious
combinations of analytical methods (particularly

PN and Effective One Body Approximation EOB) and
Numerical Relativity NR.

• Grav. Radiation theory in exact GR was
developed in ∼ 1960-80 by Trautman, Bondi,
Sachs, Newman, Penrose . . . .

• Major surprise: Even for asymptotically Minkowski space-times, the asymptotic
symmetry group is not the Poincaré group but the Bondi-Metzner-Sachs (BMS).
⇒ Energy-momentum 4-vector replaced by the ∞-component supermomentum
and angular momentum acquires a supertranslation ambiguity.

These features are largely ignored in the Waveform Community! Disconnect. Goal
of this talk is to bridge this gap. Concrete lessons for compact binary coalescences
(CBC) from the BMS group for both Waveform and mathematical GR
communities. 2 / 16



Organization

1. CBC Waveforms: How they are created
A brief summary for Mathematical Relativists

2. The BMS Group and Gravitational Radiation
Change of gears: Relevant results at I+ from exact GR

3. Constraints on the CBC Waveforms
Bringing together the first two parts

4. Summary and Discussion
Beauty of the geometry of null surfaces: One of Jurek’s loves

For brevity, I will often refer to the BBH coalescence.
But results hold also for BH-NS and BNS-NS coalescences.
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1. Wave-forms used by the LIGO-Virgo collabortion
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• Need to cover up to 8 dimensional parameter
space. NR simulations expensive; typically only ∼ 15
cycles. So, ∼ 100 cycles in the early phase of CBC
evolution calculated using approximation methods.
Phenom Models: The two are then ‘stitched
together’ and one looks for an analytical function
that fits the resulting hybrid waveform.
EOB: Analytical waveform has undetermined
coefficients that are calibrated against NR simulations

• External inputs are needed :
A. Analytical (PN and EOB) level; B. NR level;
C. Stitching procedure.

• A. PN Expansion: Expansion in v/c (believed to be asymptotic).
Ambiguities: (1) Choice of truncation at a PN order; (2) Choice of ‘Taylor approximants’: One
starts with PN expansions of the energy E(v/c) and flux F (v/c). To obtain waveforms one
needs to Taylor expand their rational functions. Ambiguity in the expansion within a PN order.

EOB: The PN trajectory mapped to that of a particle moving in a (fictitious) background
space-time; corresponds to a certain resummation that yields more accurate results.
Ambiguity: Choice of the Hamiltonian of the EOB in regions of parameter space where NR
simulations are sparse.
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External Inputs (cont.)

B. Ambiguities in NR Require choices:
(1) Waveform σ◦ = h◦+ + ih◦x extracted at a large but finite radius, not at I+.
Ambiguities in coordinate and null tetrad choices at a finite distance.
(2) Because of numerical errors associated with high frequency oscillations, in
practice only the first few (spin weighted) spherical harmonics (` = 2, 3, 4) are
calcualted.

C. Ambiguities in the stitching procedure require choices: Phenom and EOB
(1) Time during the CBC evolution at which stitching is done.
(2) PN and NR waveforms use different coordinates; matching procedure driven
by intuition and past experience rather than clear cut mathematical physics.
(3) In PN, one has point particles. No horizons. In the NR initial data, one has
dynamical horizons. So parameters of the two BHs determined very differently.
Several ways to match the waveforms by minimizing differences over a small
interval in time or frequency domain. A choice has to be made.

EOB: The way EOB waveform is joined to the quasi-normal ringing part.

For a summary addressed to Mathematical Relativists, see Appendix A of arXiv:
1906.00913 v2.
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• Nonetheless approximate, analytical waveforms have proved to be invaluable for
the first detections of gravitational waves. But already with the current
LIGO-Virgo run, we entering an era of abundant event rate and greater accuracy,
and with G3, LISA and Pulsar timing, we will achieve a much greater sensitivity
on a significantly larger frequency band. Therefore for more accurate parameter
estimation and more sensitive tests of general relativity, it is natural to ask for
quantitative measures of the accuracy of waveforms relative to exact GR.

• Key problem: We do not know what the wave forms predicted by exact GR are!
So, in the literature, accuracy tests involve comparing phenom and EOB
waveforms with NR. But NR results themselves have ambiguities and assumptions
(e.g., the final source parameters are estimated using the Isolated Horizon
geometry and assumed to be the same as those at I+). Is there a more objective
way to test for accuracy of the waveforms in the template bank, without knowing
the exact waveforms themselves?

• The infinite set of balance laws at I+ made available at I+ by the BMS group
provide a natural answer. Whatever the exact waveform is, it must obey these
laws. Therefore their violation by any putative waveform provides an objective
measure of how far the waveform in the template bank is from that of exact GR
without knowing what the exact waveform is.
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2. The BMS group
• Asymptotic flatness: Recall: (M, gab) is asymptotically Minkowski if gab
approaches a Minkowski metric as 1/r as we recede from sources in null
directions. In Bondi coordinates: ds2 → −du2 − 2dudr + r2 (dθ2 + sin2 θ dϕ2)

• Initial surprise: Presence of gravitational waves adds an unforeseen twist. There
is no longer a canonical Minkowski metric that gab approaches! This key finding
of Bondi & Sachs is still generally ignored by the waveform community.

The possible Minkowski metrics differ by angle dependent
translations. (e.g. t→ t+ ξ(θ, ϕ); ~x→ ~x) The asymptotic symmetry
group –the BMS Group B– is obtained by consistently “patching
together” their Poincaré groups P. Just as P = T o L, we have
B = S o L, where S is the infinite dimensional group of
supertranslations (i.e., angle dependent translations). Just as P
admits a 4-parameter family of Lorentz subgroups, B admits an
infinite parameter family, any two being related by a supertranslation.

ℐ
+

ℐ
-

i
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i
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i
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• Generators of supertranslations : ξa = ξ(θ, ϕ)na. S is an infinite dimensional
Abelian normal subgroup of B with B/S = L. B also admit a unique 4-d
Abelian normal subgroup T of translations: In a Bondi conformal frame,
τa = τ(θ, ϕ)na where τ(θ, ϕ) = τ00Y00 +

∑
m τ1mY1m.
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Gravitational Waves in Exact GR

• Radiative modes encoded in (equivalence classes of) connections {D} at I+. If
the curvature of {D} is trivial, it represents a ‘vacuum’ {D̊} in the YM sense. If
{D} = {D̊}, then no gravitational radiation. Subgroup of B that leaves any one
‘vacuum’ {D̊} invariant is a Poincaré group: gravitational radiation is directly
responsible for the enlargement of P to B. There is a natural isomorphism
between the space of ‘vacua’ and the group S/T .

• Given a Bondi-foliation u = const of I+ and adapted `a,m
a, we have:

(1) Radiative Information: The D on I is determined by the shear
σ◦(u, θ, φ) = −mambDa`b of `a. This is the ‘waveform’ 2σ◦ = h◦+ + ih◦x.
Bondi news tensor Nab is the conformally invariant part of the curvature of D.
mamaNab =: 2N = ˙̄σ◦. Radiation field Ψ◦4 = ¨̄σ◦.

(2) Coulombic Information: Ψ◦
2 (=−GM in Kerr) and Ψ◦

1 (= (3JG/2i) sin θ in Kerr)

not captured in the radiative modes D or σ◦ on I+.

• Natural to assume {D} → {D̊±} as u→ ±∞. Then we a acquire two
preferred Poincaré subgroups P± of B adapted to i+ and i◦ respectively. But the
two are distinct unless gravitational memory
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Balance Laws
• Standard assumption: σ̇◦ = O(1/|u|1+ε) as u→ ±∞. Then, in the two limits,
the supermomentum is determined by ReΨ◦2 at i+ and i◦:

P+
ξ = − 1

4πG

∮
u=∞ d2S ξ(θ, φ) ReΨ◦2 and P−ξ = − 1

4πG

∮
u=−∞ d2S ξ(θ, φ) ReΨ◦2.

Waveforms have no knowledge of Ψ◦2. But they do determine its time derivative,
and hence the supermomentum flux. we have an infinite set of balance laws on
I+, one for each supertranslation ξa = ξ(θ, ϕ)na:

P−ξ − P
+
ξ = 1

4πG

∮
d2S ξ(θ, ϕ)

∫∞
−∞ du

(
|σ̇◦|2 − Re ð2 ˙̄σ◦

)
By peeling-off the arbitrary ξ(θ, ϕ) we obtain a balance Eq for each (θ, ϕ):

[Ψ◦2]u=∞
u=−∞(θ, ϕ) =

∫∞
−∞ du

(
|σ̇◦|2 − Re ð2 ˙̄σ◦

)

• Thus the waveform σo(u, θ, ϕ) in exact GR must satisfy these infinite set of
equations. But not yet a constraint on the waveform because in general there is
no a priori restriction on the LHS, i.e. on the angular dependence of the limiting
values of Ψ◦2 . But we will see that for CBC, limiting values have a very specific
form. Hence the balance laws translate to constraints on waveforms.
(The SXS collaboration will soon release code to calculate Ψ◦2. Then finite (in time) versions of

the balance laws can also be used to check and improve accuracy of individual seeps in the

construction of the waveforms.) 10 / 16
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3. The Compact Binary Coalescence
• Standards assumptions made by the waveform community:
(i) NR: Space-time geometry approaches the Kerr black geometry at late times.
(ii)PN: The system is stationary in the distant past for t < −τ for some τ .

• Let us use a much weaker (and physically plausible) assumption: Asymptotic
stationarity of the Weyl curvature as one approaches i+ and i◦ along I+.
The fall -off of σ◦ in the limits u→ ±∞ already implies that ∂uΨ◦

4, ∂uΨ◦
3, ∂uΨ◦

2

all tend to zero in the limit. Let assume in addition that ∂uΨ◦
1 also goes to zero

in the limit. Assumption trivially satisfied by waveforms in the bank.

• Then, Bianchi identities at I+ imply: In the Bondi conformal frame in which
the system is at rest at i◦, the limiting Ψo2|i◦ is real and spherically symmetric.
Similarly at i+. Note: The two Bondi-frames are in general different because of
the black hole kick! Let us work in the past rest-frame at i◦

• The kick velocity of the final BH is determined by the 3-momentum carried
away by gravitational waves. Choose z direction along the velocity. Then

γ (Mi+ ) v ≡ Pz = − 1
4πG

∫
du d2V cos θ |σ̇◦(u, θ, ϕ)|2, with γ = (1− v2/c2)−

1
2

And in the initial rest-frame at io we have specific angular dependences of Ψ◦2:

Ψ◦2
∣∣
i◦ = GMi◦ ; and Ψ◦2

∣∣
i+

=
GM

i+

γ3
(
1− v

c
cos θ

)3 .
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Constraints on the Waveforms
• Thus for CBC, our balance equation for supermomentum becomes:

GMi◦ −
GM

i+

γ3
(
1− v

c
cos θ

)3 =
∫

du
[
|σ̇◦|2 − Re(ð2 ˙̄σ◦)

]
(u, θ, ϕ)

The right side is completely determined by the waveform 2σ◦ = h+ + ih−. The kick
velocity is also determined by the waveform. PN calculations provide us the initial
mass Mi◦ while NR calculations give us the final mass Mi+ . Therefore, given any
waveform in the template bank we have all the ingredients to check these infinite
number of constraints. Deviations provide an objective measure of the accuracy of
the global procedure that went into creation of the waveform.

• Special case: No kick. Then, LHS is spherically symmetric. So GR demands
that if we integrate the RHS –determined entirely by the waveform– against Y`,m
with ` 6= 0, we must obtain zero ⇒ all ‘pure’ supermomenta vanish. Strong
restriction! In practice, the kick velocity v ∼ 300km/s so v/c ∼ 10−3. Since

GMı◦ −
GM

i+

γ3
(
1− v

c
cos θ

)3 = GMı◦ − GMi+

(
1 + 3 cos θ v

c
−
(

3
2
− 6 cos2 θ

)
v2

c2
+ . . .

)
,

to rest if the waveform is accurate to ∼ 0.3% we need to keep only the first term
in v/c and then integration of the RHS against Y`,m with ` 6= 0, 1, we must obtain
zero, etc.
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4. Discussion
Goal:To bridge the gap between mathematical GR and waveform communities.

• Mathematical GR: Presence of supertranslations came as a surprise initially but
their inevitability was quickly recognized. Because the Poincaré groups P± of B
selected by {D} → {D̊±} are generically distinct and differ by a supertranslation,
there is a supertranslation ambiguity in the notion of angular momentum.
Subtracting ~J+ from ~J− (to get radiated ‘angular momentum’) is like subtracting
apples and oranges!
However, there was considerable confusion about the expression of
supermomentum till 1980s when it was resolved via phase space of radiative
modes (AA+Streubel). Early expressions gave nontrivial fluxes of supermomentum
and angular momentum even in Minkowski space-time! This was cleared up. But
general viewpoint has been that the waveforms are unrestricted –radiative modes
are ‘free data’ at I+.

• Waveform community: Supertranslations largely ignored. One typically works
with a fixed Minkowski metric ηab to which gab approaches, and uses its Poincaré
group. But in presence of radiation, this Poincaré group is adapted either to io or
i+; not to both if gravitational memory is non-trivial, as is generically the case.
~J+ is subtracted from ~J− to get radiated angular momentum!
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Lessons for both communities

• Mathematical GR: 1. For CBC, radiative modes {D} ↔ σ◦ cannot be freely
specified on I+ because the boundary conditions on sources in the asymptotic
past and asymptotic future introduce unforeseen global constraints. 2. It is true
that P+ 6= P− if there is non-trivial memory (i.e.

∫
duσ◦ 6= 0) so comparing ~J±

is like comparing apples and oranges. Still, if the final BH does not receive a kick
–i.e., if the radiated 3-momentum is zero– all (pure) supermomenta vanish!

Hence, because +Ra = −Ra + ξ(θ, ϕ)na and , the naive subtraction ~J+ − ~J−

gives the correct radiated angular momentum w.r.t. both P±. Surprise!

• Waveform community: Supertranslations not a nuisance! Supermomentum
balance laws provide an infinite family of constraints, that can be used as
objective measures of the accuracy of waveforms in the template banks. Such
measures are needed: (i) Because there are ‘external’ inputs that are not derived
from first principles, we need sharper measures of the accuracy of candidate
waveforms vis a vis exact GR; and, (ii) We are now entering an era when higher
precision will be needed both for source characterization and tests of GR.
In the generic case when there is a BH kick, the naive subtraction ~J+ − ~J− is
incorrect both in principle and in practice. In accuracies also in the angular
momentum estimates; need to revisit carefully.
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