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Introduction
We study the motion of test particles around Schwarzschild black hole perturbed by a ring-like source. In order to solve the equations of motion we employ the Lie series formalism which
enables us to approximately transform our hamiltonian into action-angle coordinates i.e. to compute the so-called Birkhoff normal form of hamiltonian. Finding this transformation is then
effectively equivalent to solving the Hamilton equations. The results are then confronted with the solution obtained by numerical integration. In the future we plan to use this approximation
in an astrophysical setting.

Action-angle coordinates and Lie

transform
Bounded orbits of an integrable system can be parametrized by the
action angle coordinates in which the hamiltonian takes a simple form:

(qi, pi)→ (ψi, Ji), H(qi, pi)→ H(Ji).

In these coordinates the Hamilton equations can be trivially solved

Ji = constant, ψi = Ωit + ψ0i.

This can be partially extended to nearly integrable systems in the form
of an expansion in a small parameter ε:

H (0) = H0(Ji) +
∑
i=1

εiH
(0)
i (ψi, Ji)

using the canonical transformations defined by the action of the Lie
operator:

H (1) = exp(ε£ω1
)H (0), £gf = {f, g}

where the Lie derivative is represented by the Poisson bracket while the
generating function χ is determined by the homological equation

{H0, ω1} + h1
!

= 0

where h1 is the part of H
(0)
1 depending on angles. The coordinate

transformations are also determined by the Lie operator:

zoldi = exp(ε£ω1
)znew.i

Successive application of the Lie operators then results in elimination
of all terms containing angles up to the desired order thus obtaining
the Birkhoff normal form of hamiltonian which depends only on actions
while the higher order terms are neglected. As already mentioned above
the equations of motion in these coordinates can be easily solved. This
solution can then be inserted into the transformation relations between
the old and the new coordinates yielding an approximate solution to
the original problem.

The metric
The studied spacetime belongs to the static and axially symmetric class of solutions of Einstein equations
described by the Weyl metric

ds2 = −e2ν(ρ,z)dt2 + e2λ(ρ,z)−2ν(ρ,z)(dρ2 + dz2) + ρ2e−2ν(ρ,z)dφ2.

fully described by two metric functions ν and λ which satisfy the field equations:

ν,ρρ +
1

ρ
ν,ρ + ν,zz = 0, λ,ρ = ρ

[
(ν,ρ)

2 + (ν,z)
2
]
, λ,z = 2ρν,ρν,z.

The first equation is linear and therefore we can easily superpose the Schwarzschild black hole and a ring with
masses M and m respectively. The Schwarzschild metric functions read:

νSchw(ρ, z) =
1

2
ln

(
d1 + d2 − 2M

d1 + d2 + 2M

)
, λSchw(ρ, z) =

1

2
ln

(
(d1 + d2)

2 − 4M 2

4d1d2

)
where d1,2 =

√
ρ2 + (z ∓M)2. The ring to be used is the Bach-Weyl ring however the second metric function

of such a superposition would be rather complicated and so we instead assume that the ring is sufficiently
distant from the black hole which means that the asymptotic expansion in the ring radius b can be performed.
The first non-trivial term of the expansion then corresponds to the quadrupole:

νring = −1

4

m

b3

(
ρ2 − 2 z2

)
, λring =

1

16

m2

b6
ρ2
(
ρ2 − 8 z2

)
.

The total superposition is then

ν = νSchw + νring, λ = λSchw + λring + λcross

where the second metric function λ includes the cross term

λcross = −1

2
((z + M) d1 + (M − z) d2)

m

b3
.

Comparison with numerical results
orbit 1

orbit 2

Two bound orbits described by spherical coordinates r and θ as functions of proper time
τ . The geodesics obtained analytically using the Lie series method are compared to the

numerical solution of the geodesic equation.

The analytical approximation
Unlike its Newtonian counterpart the Schwarschild hamiltonian cannot be exactly trans-
formed into action-angle coordinates therefore we shall for simplicity concentrate only on
the low eccentric orbits. The Schwarschild hamiltonian reads:

HSchw =
1

2

[
− 1

1− 2M
r

p2
t +

(
1− 2M

r

)
p2
r +

1

r2

(
p2
θ +

J2
φ

sin2 θ

)]
,

In order to separate the radial and angular variables we replace the evolution parameter τ
with λ: dτ = r2dλ. The angular part can be solved trivially using the transformation

Jθ = L− Jφ, θ = π − arccos

√1− Jφ
2

(Jφ + Jθ)
2 sin (ψθ)


where L is the total angular momentum. The hamiltonian then takes form:

HSchw = Hrad(r, pr) +
1

2
(Jθ + Jφ)

2

The radial part Hrad can be worked out as a series in eccentricity ε:

Hrad = H0 + JrΩ +O(ε3)

where the second term is just a harmonic oscillator with action Jr measuring the distance
from the stable circular orbit. Applying twice the Lie operator gives us the normal form of
hamiltonian with a negligible remainder:

exp(£ω2
) exp(£ω1

)HSchw = HNF (Jr, Jθ) +O(ε5)

The total hamiltonian is first linearised in the perturbation parameter Q = m
b3 :

Htot = HSchw +
∂Htot

∂Q
Q +O(Q2)

and then by successive actions of the operators exp(£ω1
), exp(£ω2

) and exp(Q£χ) approx-
imately transformed into the Birkhoff normal form

Htot = HNF (Jr, Jθ) + QZQ1(Jr, Jθ) +O(Q2).

The limits of validity of our approximation are given by our assumptions i. e. that the
parameter Q and eccentricity ε are sufficiently small. This can be clearly seen in the figures
on the left where the more eccentric analytical orbit slightly deviates from the numerical
solution.


