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Motivation: A theory of random discrete (graph-encoded) spacetime

. . .←↩

23

1

2 3

1

3

1

2
3

1

2
1

2

3

1

2

3

A

AA
←↩

3

1

3

2 1 ←↩

AIM: Non-perturbative techniques in Tensor Models, analytic Schwinger-Dyson
equations for tensor models.N.B. Upper row figures by Wikipedia (Oleg Alexandrov). Barycentric subdivision by Mathematica-code by Dror Bar-Natan.

Tutte’s Equations for maps and matrix models
Here a map is a discrete oriented surface, possibly with boundary. Tutte’s equations
[Tut63] relate the generating series of maps of neighboring genera and perimeters
(i.e. number of edges) of the boundary(ies). Generating series (formal in parameters
λα) of planar maps T` with a single boundary of length ` satisfy:

(planar) T`+1 = ∑
α

λαT`−1+α + ∑
`1+`2=`−1

T`1× T`2

⇒

j-agon
`+ 1

⇓

`2`1

In general, maps can be drawn on surfaces of genus g and boundaries of lengths
K = {`1, . . . , `k}; the corresponding generating series is T (g)

K . Generally

T (g)
l0+1,K =

d
∑

α=3
λαT (g)

l0+α−1,K +
k
∑

m=1
lmT (g)

l0+lm−1,K\{lm} +
l0−1

∑
j=0

[
T (g−1)

j, l0−1−j, K + ∑
g1+g2=g

J⊂K

T (g1)
j,J × T (g2)

l0−1−j,K\J

]
.

These are the Schwinger-Dyson equations (SDE) [Mig83] of a suitable matrix model.

What about higher dimensions? Tensor field theory ...
...is a field theory for tensors ϕ, ϕ̄ : H1⊗H2⊗ . . .⊗HD C independently trans-
forming under each unitarity W(k) ∈ U (Hk) in the fundamental representation:

ϕa1a2...aD ϕ′a1a2...aD
= ∑bk

W(k)
akbk

ϕa1a2...bk...aD
, ϕ̄p1p2...pD ϕ̄′p1p2...pD

= ∑qk
W(k)

pkqk
ϕ̄p1p2...qk...pD .

There is a bijection {unitary invariants} {D-colored graphs}. E.g. for D = 3

∑
a,b,p,q

(ϕ̄q1q2q3 ϕ̄p1p2p3)(δa1p1δa2q2δa3q3δb1q1δb2p2δb3p3)(ϕa1a2a3 ϕb1b2b3) 1 1

One constructs models S from finite sums of these invariants. Feynman diagrams
turn out to be D + 1 colored graphs — the extra color being a propagator— known
to be a dual description of PL-(pseudo)manifolds, possibly with boundary:
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logZ [J, J̄] = log
∫
DϕD ϕ̄ eTr( J̄ϕ)+Tr(ϕ̄J)−ND−1S(ϕ,ϕ̄) = ∑

B boundary

1
σ(B)GB ? (B) .

Notation: ( 1 1 )(x, y) = Jx J̄y1x2x3 Jy J̄x1y2y3 and the star ? sums over indices.

Geometric picture of the correlators GB1|B2|...|Bn

Σ2 Σn

V-generated

klubD3

Σ1

, Bα Σα , D = 3.

Results [Pér18a]
Tutte’s equations can be stated in terms of operations on the set of perimeters of the
boundary components. The analogous SDE’s of a (tensor field theory) correlator GD
turn out to be given by operations on a colored graph D that dually triangulates the
boundary. For an arbitrary disconnected graph D = Rconn. tQ, just as an edge was
marked in Tutte’s derivation, Rconn. has a marked vertex (dual to a marked trian-
gle). Although the operations on the input graph D are more involved than in the
2-dimensional case, they all match operations appearing in Tutte’s equations. For
the model S[ϕ, ϕ̄] = 〈ϕ̄, Eϕ〉+ λ( 1 1 + 2 2 + 3 3 ) these are:

Framework→ Tutte’s Equations SDE of TFT
Description ↓ disconnected ∂ disconnected ∂

Merge with interaction l0− 1 + j
c

c
f
(c)
R

Q
︸ ︷︷ ︸

R

c

c Q
ςc(D)

︸ ︷︷ ︸
R

Merge two boundaries l0− 1 + lα, K \ {lα}
c

c Q
ςc(D)

︸ ︷︷ ︸
R

Split boundaries:

Case I. # preserved (i, I)× (m, M)

i+m=l0−1 & I∪·M=K

c

c

R︷ ︸︸ ︷

c

c

⇒ ×

Case II. # increases i, m, K

Tools

Completeness of boundary geometries.

QFT-compatible connected sum # on graphs [Pér17]. The
operation # is well-defined (binary) on Feynman graphs of
any model and satisfies ω(G#K) = ω(G) + ω(K). K

G
s(e)

t(f)

t(e)

s(f)

e

f

#e f

G #e fK
s(e)

t(f)

t(e)

s(f)

F

E

Here ω is Gurău’s degree, the tensor analogue of the genus in ’t Hooft’s 1/N-
expansion. This operation is used to show that the quadratic model with interac-
tion λ( 1 1 + 2 2 + 3 3 ) generates all boundary geometries [Pér18b].

The Ward-Takahashi Identity [Pér18b] The unitary symmetries yield this identity,
which can be used to trade certain derivatives δ2Z/δJδ J̄ by (J · δZ/δJ− J̄ · δZ/δ J̄).
This helps to descend the pyramid of correlators:
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Connected-boundary Schwinger-Dyson pyramid (in collaboration with R. Pascalie and
R. Wulkenhaar [PPW17]). The Ward-Takahashi identity can be inserted to com-
pute a correlator as certain connected graph-derivatives (see below) on Z [J, J̄] =
e−λ( 1 1+ 2 2+ 3 3 )|sources

(
Zfree[J, J̄]

)
. For disconnected-boundary correlators, one

needs the graph calculus.

Graph calculus. The free energy logZ and other interesting functionals U are
spanned by colored graphs (that represent the boundary geometries), U = ∑b ubb.
To read off coefficients from equalities of two of these functionals (SDE’s arise from
such relations) one introduces the graph calculus [Pér18a]. Algebraically, this is
modelled on the monoid algebra A[G] corresponding to a certain function space
A and to the free monoid G spanned by graphs. ‘Graph derivatives’ ∂b/∂b 6= 1,
but:

∂b
∂c

= δ(b, c)× orbit of Autc(b) on the function space A .

If b is disconnected, b = gα1
1 · · · gαn

n , and the gi’s are connected, pairwise non-
isomorphic, Autc(b) = ∏a Autc(ga) o S(αa). The corresponding Leibniz rule
takes this into account and yields SDE’s for connected correlators of disconnected
boundary.

Large-N Schwinger-Dyson Equations (joint work with R. Pascalie, A. Tanasă and R.
Wulkenhaar). Gurău’s large-N limit [Gur12] generalized to Tensor Field Theory.
Closed equation in the LO of the large-N limit for the 2-point function G, [PPTW19]

G(x) =
(
|x|2 + 2λ

3

∑
a=1

∫
dqâG(qâxa)

)−1
.

Outlook

Obtain these SDE’s for each fixed ω sector of GD
Causality of Tensor Models and Tensor Field Theory

Gauge interactions on random discrete spaces (random colored graphs)

Solution of the 2-point equations and recursions

Generalization of Eynard-Orantin-Chekhov Topological Recursion
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[Pér17] Carlos I. Pérez-Sánchez. Surgery in colored tensor models. J. Geom. Phys., 120:262–289, 2017.
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