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Abstract

Focusing on the maximal conformal symmetry of vacuum solu-
tions to the Einstein equations, conserved charges associated with
conformal generators are discussed. The meaning of these charges
is given by means of the Lewis invariants which subsequently are
used to solve explicitly equations of motion for a particle in some
plane gravitational waves.

Introduction
The analysis of the motion of a particle in gravitational fields is, in general, very
complicated. Only for backgrounds exhibiting rich symmetries it can be simplified,
due to integrals of motion associated with symmetry generators. For the gravitational
fields the symmetry is usually understood as the isometry group (equivalently, the
algebra of Killing vectors). With any Killing vector one can associate an integral
of motion. When K is a conformal vector field with the conformal factor 2ψ then
along the affine parameterized geodesic the identity holds dIK

dτ = mψ. For example,
if K is a homothetic field then ψ = ψ0 = const and IK − mτψ0 is an integral of
motion. Of course, in general, ψ cannot be put directly under the derivative sign; in
consequence one obtains a non-local integral of motion. However, there are some
special cases where this procedure is possible and can be useful.

Main results
In the case of, non-flat, vacuum solutions to Einstein’s equations the maximal con-
formal symmetry group is 7-dimensional. The maximal dimension is realized by
three classes of metrics; all of them belong to the plane gravitational waves (PGW)

g ≡ x ·H(u)xdu2 + 2dudv + dx2. (1)

For the first and second classes the isometry group is 6-dimensional and there is a
homothety V = 2v∂v +x ·∇. Since for PGW the generic dimension of the isometry
group is 5, both classes exhibit the maximal dimension of the isometry group, and
they were extensively studied. Moreover, both of them do not admit the proper con-
formal transformation. The third class consists of two families [1]: the first family,
forming linearly polarized waves, is defined by

H (1)(u) =
a

(u2 + ε2)2
G(1)(u), G(1)(u) =

(
1 0
0 −1

)
, (2)

and the second, circularly polarized, one by the profiles

H (2)(u) =
a

(u2 + ε2)2
G(2)(u), G(2)(u) =

(
cos(φ(u)) sin(φ(u))
sin(φ(u)) − cos(φ(u))

)
, (3)

where φ(u) = 2γ
ε tan−1(u/ε) and γ > 0.

Besides the 5-dimensional isometry group and the mentioned homothety there is a
proper conformal vector [1]. In the linearly polarized case it reads

K(1) = (u2 + ε2)∂u −
1

2
x2∂v + ux · ∇, ψ = u. (4)

The corresponding integral of motion takes the form

I (1) = −m
2ε2

2p2
v

+ a
(x1)2 − (x2)2

2(u2 + ε2)
− (u2 + ε2)

ẋ2

2
− 1

2
x2 + ux · ẋ. (5)

Now, the key observation is that I (1) can be rewritten in terms of the Lewis invariants
[2]:

I (1) = −m
2ε2

2p2
v

− ε

2

[
(ρẋ1 − ρ̇x1)2 +

Λ1(x
1)2

ρ2

]
− ε

2

[
(ρẋ2 − ρ̇x2)2 +

Λ2(x
2)2

ρ2

]
, (6)

where Λi are some constants and the function ρ(u) =
√
u2 + ε2/

√
ε satisfies the set

of the Milne-Pinney equations. Thus, according to the general procedure [3], the
transformation

dũ

du
=

1

ρ2(u)
, x =

√
ερ(u)x̃, (7)

relates the u-dependent linear oscillator, defined by H , to another one. In our case ρ
yields the so-called Niederer transformation [4]

u = ε tan(ũ), x =
εx̃

cos(ũ)
, (8)

which is known from the fact that it relates, locally, the free motion to the half of
period harmonic motion. Thus for g(1) the transverse part of the geodesic equations,

in the new variables, takes the form of the harmonic oscillator and consequently
can be easily solved. Now, for the second, circularly polarized, family of PGW the
conformal field K(2) is of the form

K(2) = K(1) − γ(x2∂1 − x1∂2), ψ = u. (9)

Then the corresponding integral of motion takes the form

I (2) = −m
2ε2

2p2
v

− ε

2

[
(ρẋ− xρ̇)2 − x

ρ
· (G

(2)(u)

ε2
− I)

x

ρ

]
− γẋ× x. (10)

Let us note that the terms in the square brackets do not form the ordinary Lewis
invariants (G(2) depends explicitly on u). However, the function ρ satisfies Milne-
Pinney type equation with H (2) and a suitable symmetric matrix H̃ (2) (the explicit
form is given in [5]). Thus by means of the Niederer transformation the transverse
part of geodesic equations takes the form

x̃′′ = H̃ (2)(ũ)x̃. (11)

In contrast to the previous case, this time the new linear oscillator is again time-
dependent. Despite this the explicit solution can be obtained. Indeed, in the new
coordinates y

x̃ = R(ũ)y, (12)

where R(ũ) is a rotation with the angular frequency ω = γ
ε , the geodesic equations

take the following form

(y2)′′ + 2ω(y1)′ + Ω−y
2 = 0,

(y1)′′ − 2ω(y2)′ + Ω+y
1 = 0,

(13)

where
Ω± = 1− ω2 ∓ Ω, Ω =

a

ε2
. (14)

The above set of equations can be explicitly solved and consequently the initial ones
also. The solutions obtained enable more explicit analysis of the interaction of a
particle with the plane gravitational pulses.

Furthermore, the charges, can be interpreted in the new coordinates as the “classi-
cal” energy.

I (1) = −ε2

[
m2

2p2
v

+ E(1)

]
, (15)

where

E(1) =
1

2
x̃′2 − 1

2
x̃ · H̃ (1)x̃ =

1

2
x̃′2 +

Λ1(x̃
1)2

2
+

Λ2(x̃
2)2

2
. (16)

Similarly, for the second family and y′s coordinates; I (2) is related to total energy for
the system defined by the equations (13)

I (2) = −ε2

[
m2

2p2
v

+ E(2)

]
, (17)

where
E(2) =

1

2
(y′)2 +

1

2
Ω+(y1)2 +

1

2
Ω−(y2)2, (18)

and Ω± are given by eqs. (14).
To conclude let us note that taking a = 2ε3

π and γ = rε, i.e. ω = r > 0, in the limit
ε 7→ 0 one obtains the Dirac delta profile

H (2)(u) 7→
(

1 0
0 −1

)
δ(u) ·

{
sin(πr)
πr(1−r2), r 6= 1;

1
2, r = 1.

(19)

In contrast to sandwiches approach, the contraction ε 7→ 0 of the conformal algebra
yields a conformal algebra for the Dirac delta profile. For more details and applica-
tions see [5].

Final remarks
It turns out that the discussed conformal symmetry preserves also some electromag-
netic fields, thus the above results can be directly extend to some additional electro-
magnetic backgrounds as well as fit into recent investigations of non-local charges
in [6] and classical double copy idea [7].
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